skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Causes of Synoptic‐Scale Eddy Heat Flux Decline
Abstract The poleward heat flux by atmospheric waves plays a pivotal role in maintaining the meridional temperature gradient. A recent study found that in the Northern Hemisphere the heat flux by transient eddies has been weakening, and the study attributed this weakening to the smaller equator‐to‐pole temperature gradient caused by Arctic warming. During the period of 1979–2019 examined here, for the annual mean, both the synoptic‐scale eddy heat flux and the temperature gradient had indeed declined. However, from October to April, the synoptic‐scale eddy flux trend is more closely tied to the planetary‐scale eddy heat flux trend, than to the temperature gradient trend. From June to August, the synoptic‐scale eddy flux decline can be attributed to a warming of the high‐latitude land areas. Therefore, a more comprehensive interpretation of the synoptic‐scale eddy heat flux trend needs to include the dynamics of the planetary‐scale waves and summer land warming.  more » « less
Award ID(s):
1948667
PAR ID:
10393775
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
24
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Future projections of the poleward eddy heat flux by the atmosphere are often regarded as being uncertain because of the competing effect between surface and upper-tropospheric meridional temperature gradients. Previous idealized modeling studies showed that eddy heat flux response is more sensitive to the variability of lower-tropospheric temperature gradient. However, observational evidence is lacking. In this study, observational data analyses are performed to examine the relationships between eddy heat fluxes and temperature gradients during boreal winter by constructing daily indices. On the intraseasonal time scale, the surface temperature gradient is found to be more effective at regulating the synoptic-scale eddy heat flux (SF) than is the upper-tropospheric temperature gradient. Enhancements in surface temperature gradient, however, are subject to an inactive planetary-scale eddy heat flux (PF). The PF in turn is dependent on the zonal gradient in tropical convective heating. Consistent with these interactions, over the past 40 winters, the zonal gradient in tropical heating and PF have been trending upward, while the surface temperature gradient and SF have been trending downward. These results indicate that for a better understanding of eddy heat fluxes, attention should be given to zonal convective heating gradients in the tropics as much as to meridional temperature gradients. 
    more » « less
  2. Abstract According to baroclinic adjustment theory, the isentropic slope maintains its marginal state for baroclinic instability. However, the recent trend of Arctic warming raises the possibility that there could have been a systematic change in the extratropical isentropic slope. In this study, global reanalysis data are used to investigate this possibility. The result shows that tropospheric isentropes north of 50°N have been flattening significantly during winter for the recent 25 years. This trend pattern fluctuates at intraseasonal time scales. An examination of the temporal evolution indicates that it is the planetary-scale (zonal wavenumbers-1–3) eddy heat fluxes, not the synoptic-scale eddy heat fluxes, that flatten the isentropes; synoptic-scale eddy heat fluxes instead respond to the subsequent changes in isentropic slope. This extratropical planetary-scale wave growth is preceded by an enhanced zonal asymmetry of tropical heating and poleward wave activity vectors. A numerical model is used to test if the observed latent heating can generate the observed isentropic slope anomalies. The result shows that the tropical heating indeed contributes to the isentropic slope trend. The agreement between the model solution and the observation improves substantially if extratropical latent heating is also included in the forcing. The model temperature response shows a pattern resembling the warm-Arctic–cold-continent pattern. From these results, it is concluded that the recent flattening trend of isentropic slope north of 50°N is mostly caused by planetary-scale eddy activities generated from latent heating, and that this change is accompanied by a warm-Arctic–cold-continent pattern that permeates the entire troposphere. 
    more » « less
  3. Abstract Interactions between large-scale waves and the Hadley Cell are examined using a linear two-layer model on anf-plane. A linear meridional moisture gradient determines the strength of the idealized Hadley Cell. The trade winds are in thermal wind balance with a weak temperature gradient (WTG). The mean meridional moisture gradient is unstable to synoptic-scale (horizontal scale of ∼1000 km) moisture modes that are advected westward by the trade winds, reminiscent of oceanic tropical depression-like waves. Meridional moisture advection causes the moisture modes to grow from “moisture-vortex instability” (MVI), resulting in a poleward eddy moisture flux that flattens the zonal-mean meridional moisture gradient, thereby weakening the Hadley Cell. The amplification of waves at the expense of the zonal-mean meridional moisture gradient implies a downscale latent energy cascade. The eddy moisture flux is opposed by a regeneration of the meridional moisture gradient by the Hadley Cell. These Hadley Cell-moisture mode interactions are reminiscent of quasi-geostrophic interactions, except that wave activity is due to column moisture variance rather than potential vorticity variance. The interactions can result in predator-prey cycles in moisture mode activity and Hadley Cell strength that are akin to ITCZ breakdown. It is proposed that moisture modes are the tropical analog to midlatitude baroclinic waves. MVI is analogous to baroclinic instability, stirring latent energy in the same way that dry baroclinic eddies stir sensible heat. These results indicate that moisture modes stabilize the Hadley Cell, and may be as important as the latter in global energy transport. 
    more » « less
  4. Abstract Coastal marine heatwaves (MHWs) modulate coastal climate through ocean‐land‐atmosphere interactions, but little is known about how coastal MHWs interact with coastal cities and modify urban thermal environment. In this study, a representative urban coastal environment under MHWs is simplified to a mixed convection problem. Fourteen large‐eddy simulations (LESs) are conducted to investigate how coastal cities interact with MHWs. We consider the simulations by simple urban roughness setup (Set A) as well as explicit urban roughness representation (Set B). Besides, different MHW intensities, synoptic wind speeds, surface fluxes of urban and sea patches are considered. Results suggest that increasing MHW intensity alters streamwise potential temperature gradient and vertical velocity direction. The magnitude of vertical velocity and urban heat island (UHI) intensity decrease with increasing synoptic wind speed. Changing urban or sea surface heat flux also leads to important differences in flow and temperature fields. Comparison between Set A and B reveals a significant increase of vertical velocity magnitude and UHI intensity. To further understand this phenomenon, a canopy layer UHI model is proposed to show the relationship between UHI intensity and urban canopy, thermal heterogeneity and mean advection. The effect of urban canopy is considered in terms of an additional vertical velocity scale that facilitates heat transport from the heated surface and therefore increases UHI intensity. The model can well explain the trend of the simulated results and implies that overlooking the effect of urban canopy underestimates canopy UHI in urban coastal environment. 
    more » « less
  5. Abstract Eddy heat fluxes play the important role of transferring heat from low to high latitudes, thus affecting midlatitude climate. The recent and projected polar warming, and its effects on the meridional temperature gradients, suggests a possible weakening of eddy heat fluxes. We here examine this question in reanalyses and state-of-the-art global climate models. In the Northern Hemisphere we find that the eddy heat flux has robustly weakened over the last four decades. We further show that this weakening emerged from the internal variability around the year 2000, and we attribute it to increasing greenhouse gases. In contrast, in the Southern Hemisphere we find that the eddy heat flux has robustly strengthened, and we link this strengthening to the recent multi-decadal cooling of Southern-Ocean surface temperatures. The inability of state-of-the-art climate models to simulate such cooling prevents them from capturing the observed Southern Hemisphere strengthening of the eddy heat flux. This discrepancy between models and reanalyses provides a clear example of how model biases in polar regions can affect the midlatitude climate. 
    more » « less