skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A generic framework for efficient computation of top-k diverse results
Result diversification is extensively studied in the context of search, recommendation, and data exploration. There are numerous algorithms that return top-k results that are both diverse and relevant. These algorithms typically have computational loops that compare the pairwise diversity of records to decide which ones to retain. We propose an access primitive DivGetBatch() that replaces repeated pairwise comparisons of diversity scores of records by pairwise comparisons of “aggregate” diversity scores of a group of records, thereby improving the running time of these algorithms while preserving the same results. We integrate the access primitive inside three representative diversity algorithms and prove that the augmented algorithms leveraging the access primitive preserve original results. We analyze the worst and expected case running times of these algorithms. We propose a computational framework to design this access primitive that has a pre-computed index structure I-tree that is agnostic to the specific details of diversity algorithms. We develop principled solutions to construct and maintain I-tree. Our experiments on multiple large real-world datasets corroborate our theoretical findings, while ensuring up to a 24× speedup.  more » « less
Award ID(s):
2118458 2007935 1942913 1814595
PAR ID:
10393846
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The VLDB Journal
ISSN:
1066-8888
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Moratelli, Ricardo (Ed.)
    Abstract While museum voucher specimens continue to be the standard for species identifications, biodiversity data are increasingly represented by photographic records from camera traps and amateur naturalists. Some species are easily recognized in these pictures, others are impossible to distinguish. Here we quantify the extent to which 335 terrestrial nonvolant North American mammals can be identified in typical photographs, with and without considering species range maps. We evaluated all pairwise comparisons of species and judged, based on professional opinion, whether they are visually distinguishable in typical pictures from camera traps or the iNaturalist crowdsourced platform on a 4-point scale: (1) always, (2) usually, (3) rarely, or (4) never. Most (96.5%) of the 55,944 pairwise comparisons were ranked as always or usually distinguishable in a photograph, leaving exactly 2,000 pairs of species that can rarely or never be distinguished from typical pictures, primarily within clades such as shrews and small-bodied rodents. Accounting for a species geographic range eliminates many problematic comparisons, such that the average number of difficult or impossible-to-distinguish species pairs from any location was 7.3 when considering all species, or 0.37 when considering only those typically surveyed with camera traps. The greatest diversity of difficult-to-distinguish species was in Arizona and New Mexico, with 57 difficult pairs of species, suggesting the problem scales with overall species diversity. Our results show which species are most readily differentiated by photographic data and which taxa should be identified only to higher taxonomic levels (e.g., genus). Our results are relevant to ecologists, as well as those using artificial intelligence to identify species in photographs, but also serve as a reminder that continued study of mammals through museum vouchers is critical since it is the only way to accurately identify many smaller species, provides a wealth of data unattainable from photographs, and constrains photographic records via accurate range maps. Ongoing specimen voucher collection, in addition to photographs, will become even more important as species ranges change, and photographic evidence alone will not be sufficient to document these dynamics for many species. 
    more » « less
  2. Diversity is an important principle in data selection and summarization, facility location, and recommendation systems. Our work focuses on maximizing diversity in data selection, while offering fairness guarantees. In particular, we offer the first study that augments the Max-Min diversification objective with fairness constraints. More specifically, given a universe 𝒰 of n elements that can be partitioned into m disjoint groups, we aim to retrieve a k-sized subset that maximizes the pairwise minimum distance within the set (diversity) and contains a pre-specified k_i number of elements from each group i (fairness). We show that this problem is NP-complete even in metric spaces, and we propose three novel algorithms, linear in n, that provide strong theoretical approximation guarantees for different values of m and k. Finally, we extend our algorithms and analysis to the case where groups can be overlapping. 
    more » « less
  3. The problem of rank aggregation from pairwise and multiway comparisons has a wide range of implications, ranging from recommendation systems to sports rankings to social choice. Some of the most popular algorithms for this problem come from the class of spectral ranking algorithms; these include the rank centrality (RC) algorithm for pairwise comparisons, which returns consistent estimates under the Bradley-Terry-Luce (BTL) model for pairwise comparisons (Negahban et al., 2017), and its generalization, the Luce spectral ranking (LSR) algorithm, which returns consistent estimates under the more general multinomial logit (MNL) model for multiway comparisons (Maystre & Grossglauser, 2015). In this paper, we design a provably faster spectral ranking algorithm, which we call accelerated spectral ranking (ASR), that is also consistent under the MNL/BTL models. Our accelerated algorithm is achieved by designing a random walk that has a faster mixing time than the random walks associated with previous algorithms. In addition to a faster algorithm, our results yield improved sample complexity bounds for recovery of the MNL/BTL parameters: to the best of our knowledge, we give the first general sample complexity bounds for recovering the parameters of the MNL model from multiway comparisons under any (connected) comparison graph (and improve significantly over previous bounds for the BTL model for pairwise comparisons). We also give a message-passing interpretation of our algorithm, which suggests a decentralized distributed implementation. Our experiments on several real-world and synthetic datasets confirm that our new ASR algorithm is indeed orders of magnitude faster than existing algorithms. 
    more » « less
  4. The problem of rank aggregation from pairwise and multiway comparisons has a wide range of implications, ranging from recommendation systems to sports rankings to social choice. Some of the most popular algorithms for this problem come from the class of spectral ranking algorithms; these include the rank centrality (RC) algorithm for pairwise comparisons, which returns consistent estimates under the Bradley-Terry-Luce (BTL) model for pairwise comparisons (Negahban et al., 2017), and its generalization, the Luce spectral ranking (LSR) algorithm, which returns consistent estimates under the more general multinomial logit (MNL) model for multiway comparisons (Maystre & Grossglauser, 2015). In this paper, we design a provably faster spectral ranking algorithm, which we call accelerated spectral ranking (ASR), that is also consistent under the MNL/BTL models. Our accelerated algorithm is achieved by designing a random walk that has a faster mixing time than the random walks associated with previous algorithms. In addition to a faster algorithm, our results yield improved sample complexity bounds for recovery of the MNL/BTL parameters: to the best of our knowledge, we give the first general sample complexity bounds for recovering the parameters of the MNL model from multiway comparisons under any (connected) comparison graph (and improve significantly over previous bounds for the BTL model for pairwise comparisons). We also give a message-passing interpretation of our algorithm, which suggests a decentralized distributed implementation. Our experiments on several real-world and synthetic datasets confirm that our new ASR algorithm is indeed orders of magnitude faster than existing algorithms. 
    more » « less
  5. Clustering plays a crucial role in computer science, facilitating data analysis and problem-solving across numerous fields. By partitioning large datasets into meaningful groups, clustering reveals hidden structures and relationships within the data, aiding tasks such as unsupervised learning, classification, anomaly detection, and recommendation systems. Particularly in relational databases, where data is distributed across multiple tables, efficient clustering is essential yet challenging due to the computational complexity of joining tables. This paper addresses this challenge by introducing efficient algorithms for k-median and k-means clustering on relational data without the need for pre-computing the join query results. For the relational k-median clustering, we propose the first efficient relative approximation algorithm. For the relational k-means clustering, our algorithm significantly improves both the approximation factor and the running time of the known relational k-means clustering algorithms, which suffer either from large constant approximation factors, or expensive running time. Given a join query q and a database instance D of O(N) tuples, for both k-median and k-means clustering on the results of q on D, we propose randomized (1+ε)γ-approximation algorithms that run in roughly O(k2Nfhw)+T_γ(k2) time, where ε ∈ (0,1) is a constant parameter decided by the user, \fhw is the fractional hyper-tree width of Q, while γ and T_γ(x) represent the approximation factor and the running time, respectively, of a traditional clustering algorithm in the standard computational setting over x points. 
    more » « less