skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Patients Waiting for Cues: Information Asymmetries and Challenges in Sharing Patient-Generated Data in the Clinic
Patient-generated data (PGD) show great promise for informing the delivery of personalized and patient-centered care. However, patients' data tracking does not automatically lead to data sharing and discussion with clinicians, which can make it difficult to utilize and derive optimal benefit from PGD. In this paper, we investigate whether and how patients share their PGD with clinicians and the types of challenges that arise within this context. We describe patients' immediate experiences of PGD sharing with clinicians, based on our short onsite interviews with 57 patients who had just met with a clinician at a university health center. Our analyses identified overarching patterns in patients' PGD sharing practices and the associated challenges that arise from the information asymmetry between patients and clinicians and from patients' reliance on their memory to share their PGD. We discuss the implications of our findings for designing PGD-integrated health IT systems in ways to support patients' tracking of relevant PGD, clinicians' effective engagement with patients around PGD, and the efficient sharing and review of PGD within clinical settings.  more » « less
Award ID(s):
1753453
PAR ID:
10394122
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Human-Computer Interaction
Volume:
6
Issue:
CSCW1
ISSN:
2573-0142
Page Range / eLocation ID:
1 to 23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background Remote patient monitoring (RPM) technologies can support patients living with chronic conditions through self-monitoring of physiological measures and enhance clinicians’ diagnostic and treatment decisions. However, to date, large-scale pragmatic RPM implementation within health systems has been limited, and understanding of the impacts of RPM technologies on clinical workflows and care experience is lacking. Objective In this study, we evaluate the early implementation of operational RPM initiatives for chronic disease management within the ambulatory network of an academic medical center in New York City, focusing on the experiences of “early adopter” clinicians and patients. Methods Using a multimethod qualitative approach, we conducted (1) interviews with 13 clinicians across 9 specialties considered as early adopters and supporters of RPM and (2) speculative design sessions exploring the future of RPM in clinical care with 21 patients and patient representatives, to better understand experiences, preferences, and expectations of pragmatic RPM use for health care delivery. Results We identified themes relevant to RPM implementation within the following areas: (1) data collection and practices, including impacts of taking real-world measures and issues of data sharing, security, and privacy; (2) proactive and preventive care, including proactive and preventive monitoring, and proactive interventions and support; and (3) health disparities and equity, including tailored and flexible care and implicit bias. We also identified evidence for mitigation and support to address challenges in each of these areas. Conclusions This study highlights the unique contexts, perceptions, and challenges regarding the deployment of RPM in clinical practice, including its potential implications for clinical workflows and work experiences. Based on these findings, we offer implementation and design recommendations for health systems interested in deploying RPM-enabled health care. 
    more » « less
  2. Risk information is increasingly available to health care providers and patients thanks to a growing body of health outcomes research and clinical prediction models. Meanwhile, communicating such information is encouraged for a variety of reasons. Yet clinicians often struggle to communicate risk information—or forego the task altogether due to various challenges. The challenges are real, and this paper briefly discusses six of them: (1) Clinician reliance on verbal risk descriptions, (2) Low patient numeracy; (3) Lack of meaningful numeric evidence; (4) Patient use of heuristics; (5) Uncertain risk information; and (6) The curse of knowledge. Specific strategies exist for clinicians, though, to overcome these complex challenges. In the paper, we present evidence-based best practices with examples of what clinicians can do to effectively communicate risk information to their patients (and what they should not do). The best practices include communicating with numbers, not only words; decreasing cognitive effort for patients; providing the meaning of numeric risk data important to decisions; acknowledging uncertainty; and testing communication with patients through teach-back techniques. We conclude by recommending that clinicians integrate these strategies into their existing scripts for patient encounters. 
    more » « less
  3. The healthcare sector is constantly improving patient health record systems. However, these systems face a significant challenge when confronted with patient health record (PHR) data due to its sensitivity. In addition, patient’s data is stored and spread generally across various healthcare facilities and among providers. This arrangement of distributed data becomes problematic whenever patients want to access their health records and then share them with their care provider, which yields a lack of interoperability among various healthcare systems. Moreover, most patient health record systems adopt a centralized management structure and deploy PHRs to the cloud, which raises privacy concerns when sharing patient information over a network. Therefore, it is vital to design a framework that considers patient privacy and data security when sharing sensitive information with healthcare facilities and providers. This paper proposes a blockchain framework for secured patient health records sharing that allows patients to have full access and control over their health records. With this novel approach, our framework applies the Ethereum blockchain smart contracts, the Inter-Planetary File System (IPFS) as an off-chain storage system, and the NuCypher protocol, which functions as key management and blockchain-based proxy re-encryption to create a secured on-demand patient health records sharing system effectively. Results show that the proposed framework is more secure than other schemes, and the PHRs will not be accessible to unauthorized providers or users. In addition, all encrypted data will only be accessible to and readable by verified entities set by the patient. 
    more » « less
  4. After the pandemic, artificial intelligence (AI) powered support for mental health care has become increasingly important. The breadth and complexity of significant challenges required to provide adequate care involve:(a) Personalized patient understanding, (b) Safety-constrained and medically validated chatbot patient interactions, and (c) Support for continued feedback-based refinements in design using chatbot-patient interactions. We propose Alleviate, a chatbot designed to assist patients suffering from mental health challenges with personalized care and assist clinicians with understanding their patients better. Alleviate draws from an array of publicly available clinically valid mental-health texts and databases, allowing Alleviate to make medically sound and informed decisions. In addition, Alleviate's modular design and explainable decision-making lends itself to robust and continued feedback-based refinements to its design. In this paper, we explain the different modules of Alleviate and submit a short video demonstrating Alleviate's capabilities to help patients and clinicians understand each other better to facilitate optimal care strategies. 
    more » « less
  5. Patients often have their healthcare data stored in centralized systems, leading to challenges when reconciling or consolidating their data across providers due to centralized databases that store patient identities. The challenges disrupt the flow of patient care where time is sensitive for both patients and providers. Decentralized technologies have enabled a new identity model–Self-Sovereign Identity (SSI)–that grants individuals the right to freely control, access, and share their own data. This work proposes a system that achieves SSI in a semi-permissioned blockchain network using an open protocol as the certificate of authority and several guidelines for securely handling transactions in the network. Open protocols like Keccak can grant access to a permission-based network such as Hyperledger Fabric. The network architecture ensures data security and privacy through mechanisms of multi-signature transactions and guidelines for storing transactions locally, making this architecture ideal for privacy-centered use cases, such as healthcare data-sharing applications. The ultimate goal is to give patients full control over their identity and other data derived from their identity within a semi-permissioned network. 
    more » « less