skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Insights into Flood Wave Propagation in Natural Streams as Captured with Acoustic Profilers at an Index-Velocity Gaging Station
Recent advances in instruments are transforming our capabilities to better understand, monitor, and model river systems. The present paper illustrates such capabilities by providing new insights into unsteady flows captured with a Horizontal Acoustic Current Profiler (HADCP) integrated at an operational index-velocity gaging station. The illustrations demonstrate that the high-resolution stage and velocity measurements directly acquired during flood wave propagation reveal the intricate interplay among flow variables that are essential for better supporting judicious decision making for river management, flooding, sediment transport, and stream ecology. The paper confirms that the index-velocity method better captures the unsteady flow dynamics in comparison with the stage-discharge monitoring approach. At a time when the intensity and frequency of floods is continuously increasing, a better understanding of the critical features of flood waves during extreme events and the possibility of capturing more accurately their dynamics in real time is of special socio-economic significance.  more » « less
Award ID(s):
2139649
PAR ID:
10394259
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Water
Volume:
14
Issue:
9
ISSN:
2073-4441
Page Range / eLocation ID:
1380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Streamflow forecasting generally relies on coupled rainfall-runoff-routing models calibrated and executed with data estimated by monitoring protocols that do not fully capture the dynamics of unsteady flows. This limits the ability to accurately forecast flood crests and issue hazard warnings. Here we utilize directly measured datasets acquired for streamflow estimation to develop a data-driven forecasting algorithm that does not require conventional physically-based modeling. We test the potential of our algorithm using measurements acquired at an index-velocity gaging station on the Illinois River, USA, between 2014 and 2019. We find that the forecasting protocol is able to deliver short-term predictions of flood crest magnitude and arrival time. The algorithm produces better agreement with larger events and is more reliable for single-peak storms possibly due to the prominence of hysteretic behavior in such events. We conclude that flood hazard can be forecast using directly measured index-velocity and stage alone. 
    more » « less
  2. ABSTRACT This paper demonstrates that the multivariate monitoring methods are capable to underpin the systematic investigation of the hysteretic behaviour occurring during gradually‐varied flows. For this purpose, we present simultaneous measurements of stage, index velocity and free‐surface slope acquired continuously with high‐frequency sampling instruments deployed at several river gaging sites exposed to different storm magnitudes. The experimental evidence reveals intrinsic features of unsteady open‐channel flow mechanics that are hinted by pertinent governing equations but rarely substantiated with in situ measurements. The illustrations are intentionally made for fluvial waves propagating in lowland rivers where the relationships among flow variables are most likely displaying hysteretic phasing in the progression of the hydraulic variables and loops in their relationships. The presented measurements highlight that: (a) the hysteretic behaviour is apparent in both time‐independent and time‐dependent graphical representations of any two of the hydraulic variables; (b) the severity of the hysteresis is commensurate with the geomorphic, hydraulic and hydrological characteristics of the measurement site; and (c) there are flow monitoring paradigms that can more accurately track changes of the flow variables during gradually‐varied flows than those currently used in practice. Also discussed are research needs for advancing the understanding of the mechanisms underlying the movement and storage of water in the lowland river environments as well as for increasing the accuracy of streamflow monitoring, modelling and forecasting. 
    more » « less
  3. Abstract Losses from catastrophic floods are driving intense efforts to increase preparedness and improve response to disastrous flood events by providing early warnings. Yet accurate flood forecasting remains a challenge due to uncertainty in modeling, calibrating, and validating a useful early warning system. This paper presents the Requisitely Simple (ReqSim) flood forecasting system that includes key variables and processes of basin hydrology and atmospheric forcing in a data-driven modeling framework. The simplicity of the modeling structure and data requirements of the system allows for customization and implementation in any medium to large rain-fed river basin globally, provided there are water level or discharge measurements at the forecast locations. The proposed system's efficacy is demonstrated in this paper through providing useful forecasts for various river basins around the world. This include 3–10-day forecasts for the Ganges and Brahmaputra rivers in South Asia, 2–3-day forecast for the Amur and Yangtze rivers in East Asia, 5–10-day forecasts for the Niger, Congo and Zambezi rivers in West and Central Africa, 6–8-day forecasts for the Danube River in Europe, 2–5-day forecasts for the Parana River in South America, and 2–7-day forecasts for the Mississippi, Missouri, Ohio, and Arkansas rivers in the USA. The study also quantifies the effect of basin size, topography, hydrometeorology, and river flow controls on forecast accuracy and lead times. Results indicate that ReqSim's forecasts perform better in river systems with moderate slopes, high flow persistence, and less flow controls. The simple structure, minimal data requirements, ease of operation, and useful operational accuracy make ReqSim an attractive option for effective real-time flood forecasting in medium and large river basins worldwide. 
    more » « less
  4. Abstract The Mekong River Basin (MRB) is undergoing unprecedented changes due to the recent acceleration in large-scale dam construction. While the hydrology of the MRB is well understood and the effects of some of the existing dams have been studied, the potential effects of the planned dams on flood pulse dynamics over the entire Lower Mekong remains unexamined. Here, using hydrodynamic model simulations, we show that the effects of flow regulation on downstream river-floodplain dynamics are relatively predictable along the mainstream Mekong, but flow regulations could potentially disrupt the flood dynamics in the Tonle Sap River (TSR) and small distributaries in the Mekong Delta. Results suggest that TSR flow reversal could cease if the Mekong flood pulse is dampened by 50% and delayed by one-month. While flood occurrence in the vicinity of the Tonle Sap Lake and middle reach of the delta could increase due to enhanced low flow, it could decrease by up to five months in other areas due to dampened high flow, particularly during dry years. Further, areas flooded for less than five months and over six months are likely to be impacted significantly by flow regulations, but those flooded for 5–6 months could be impacted the least. 
    more » « less
  5. Floods are amplified and attenuated by features and processes across spatial scales, defined here as flood dynamics. We review and synthesise these influences at the catchment, river network and reach scales as a means of integrating understanding of controls on flood dynamics and identifying key questions that arise because of differences in techniques of investigation and disciplinary emphases between spatial scales. Catchment‐scale influences include catchment area, topography, lithology, land cover, precipitation, antecedent conditions and human alterations such as changing land cover. Network‐scale influences on flood dynamics include network topology, longitudinal variations in the geometry of successive river corridor reaches, lakes and wetlands and human alterations including flow regulation and cumulative changes in channel‐floodplain connectivity in multiple reaches across a network. Reach‐scale influences on flood dynamics include water sources, river corridor geometry and connectivity and human alterations such as artificial levees, channelisation, bank stabilisation, changes to floodplain land cover and drainage, dike operation, process‐based river restoration and urban stormwater management. Our review and synthesis of relevant literature suggest that the relative importance of these multiple influences on flood dynamics varies across spatial scales. Hillslope response may dominate hydrograph characteristics in smaller catchments, for example, whereas network geometry and flow dynamics exert progressively stronger influences on flood dynamics with increasing catchment size. Scale‐specific advances in understanding flood dynamics, including rainfall‐runoff analyses of water movements from uplands into channel networks (catchment‐scale), analyses of flow dynamics along networks of multiple channel reaches (network‐scale) and investigations of biophysical feedbacks and the influences of river corridor geometry and hydraulic roughness (reach‐scale), have largely contributed to understanding flood dynamics, but there remain important disconnects between these diverse bodies of research and outstanding questions related to the cumulative effects on flood dynamics across scales. 
    more » « less