Semiconducting carbon nanotubes promise faster performance and lower power consumption than Si in field-effect transistors (FETs) if they can be aligned in dense arrays. Here, we demonstrate that nanotubes collected at a liquid/liquid interface self-organize to form two-dimensional (2D) nematic liquid crystals that globally align with flow. The 2D liquid crystals are transferred onto substrates in a continuous process generating dense arrays of nanotubes aligned within ±6°, ideal for electronics. Nanotube ordering improves with increasing concentration and decreasing temperature due to the underlying liquid crystal phenomena. The excellent alignment and uniformity of the transferred assemblies enable FETs with exceptional on-state current density averaging 520 μA μm −1 at only −0.6 V, and variation of only 19%. FETs with ion gel top gates demonstrate subthreshold swing as low as 60 mV decade −1 . Deposition across a 10-cm substrate is achieved, evidencing the promise of 2D nanotube liquid crystals for commercial semiconductor electronics.
more »
« less
Carbon nanotube transistors: Making electronics from molecules
Semiconducting carbon nanotubes are robust molecules with nanometer-scale diameters that can be used in field-effect transistors, from larger thin-film implementation to devices that work in conjunction with silicon electronics, and can potentially be used as a platform for high-performance digital electronics as well as radio-frequency and sensing applications. Recent progress in the materials, devices, and technologies related to carbon nanotube transistors is briefly reviewed. Emphasis is placed on the most broadly impactful advancements that have evolved from single-nanotube devices to implementations with aligned nanotubes and even nanotube thin films. There are obstacles that remain to be addressed, including material synthesis and processing control, device structure design and transport considerations, and further integration demonstrations with improved reproducibility and reliability; however, the integration of more than 10,000 devices in single functional chips has already been realized.
more »
« less
- Award ID(s):
- 1915814
- PAR ID:
- 10394424
- Date Published:
- Journal Name:
- Science
- Volume:
- 378
- Issue:
- 6621
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- 726 to 732
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract To exploit their charge transport properties in transistors, semiconducting carbon nanotubes must be assembled into aligned arrays comprised of individualized nanotubes at optimal packing densities. However, achieving this control on the wafer‐scale is challenging. Here, solution‐based shear in substrate‐wide, confined channels is investigated to deposit continuous films of well‐aligned, individualized, semiconducting nanotubes. Polymer‐wrapped nanotubes in organic ink are forced through sub‐mm tall channels, generating shear up to 10 000 s−1uniformly aligning nanotubes across substrates. The ink volume and concentration, channel height, and shear rate dependencies are elucidated. Optimized conditions enable alignment within a ±32° window, at 50 nanotubes µm−1, on 10 × 10 cm2substrates. Transistors (channel length of 1–5 µm) are fabricated parallel and perpendicular to the alignment. The parallel transistors perform with 7× faster charge carrier mobility (101 and 49 cm2V−1s−1assuming array and parallel‐plate capacitances, respectively) with high on/off ratio of 105. The spatial uniformity varies ±10% in density, ±2° in alignment, and ±7% in mobility. Deposition occurs within seconds per wafer, and further substrate scaling is viable. Compared to random networks, aligned nanotube films promise to be a superior platform for applications including sensors, flexible/stretchable electronics, and light emitting and harvesting devices.more » « less
-
In this paper, we report the wafer-scale fabrication of carbon nanotube field-effect transistors (CNTFETs) with the dielectrophoresis (DEP) method. Semiconducting carbon nanotubes (CNTs) were positioned as the active channel material in the fabrication of carbon nanotube field-effect transistors (CNTFETs) with dielectrophoresis (DEP). The drain-source current (IDS) was measured as a function of the drain-source voltage (VDS) and gate-source voltage (VGS) from each CNTFET on the fabricated wafer. The IDS on/off ratio was derived for each CNTFET. It was found that 87% of the fabricated CNTFETs was functional, and that among the functional CNTFETs, 30% of the CNTFETs had an IDS on/off ratio larger than 20 while 70% of the CNTFETs had an IDS on/off ratio lower than 20. The highest IDS on/off ratio was about 490. The DEP-based positioning of carbon nanotubes is simple and effective, and the DEP-based device fabrication steps are compatible with Si technology processes and could lead to the wafer-scale fabrication of CNT electronic devices.more » « less
-
Abstract Printed electronics have made remarkable progress in recent years and inkjet printing (IJP) has emerged as one of the leading methods for fabricating printed electronic devices. However, challenges such as nozzle clogging, and strict ink formulation constraints have limited their widespread use. To address this issue, a novel nozzle‐free printing technology is explored, which is enabled by laser‐generated focused ultrasound, as a potential alternative printing modality called Shock‐wave Jet Printing (SJP). Specifically, the performance of SJP‐printed and IJP‐printed bottom‐gated carbon nanotube (CNT) thin film transistors (TFTs) is compared. While IJP required ten print passes to achieve fully functional devices with channel dimensions ranging from tens to hundreds of micrometers, SJP achieved comparable performance with just a single pass. For optimized devices, SJP demonstrated six times higher maximum mobility than IJP‐printed devices. Furthermore, the advantages of nozzle‐free printing are evident, as SJP successfully printed stored and unsonicated inks, delivering moderate electrical performance, whereas IJP suffered from nozzle clogging due to CNT agglomeration. Moreover, SJP can print significantly longer CNTs, spanning the entire range of tube lengths of commercially available CNT ink. The findings from this study contribute to the advancement of nanomaterial printing, ink formulation, and the development of cost‐effective printable electronics.more » « less
-
null (Ed.)A novel technique called hydrogen evolution assisted (HEA) electroplating, has dramatically shown enhancement to the deposition rate of copper compared to galvanostatic conventional electroplating methods, opening new venues for the direct integration of devices to fabrics leading to the development of useful wearable electronics. HEA can be used for both printing copper tracks on a multi-wall carbon nanotubes (MWCNTs) coated template tracks and soldering surface mount electronic devices (SMD) to such tracks, demonstrating its versatility to be used for specific applications in which fabric mutilation wants to be prevented. However, in this project we studied how copper deposition takes place at different voltage ranges using 1000 Denier Coated Cordura Nylon, Laminated Polyester Ripstop and 100% Virgin Vinyl in the constant presence of the hydrogen evolution technique. Cupric sulfate (CUSO 4 ) and sulfuric acid (H 2 SO 4 ) were used as the medium to allow a lateral deposition over a multi-wall carbon nanotube track of 0.1mm by the application of a voltage ranging between - 0.5V to -2.0V using a potentiostat to employ the cyclic voltammeter technique in order to achieve a uniform deposition. Structure of the fabrics and variation of the copper deposits with respect to the type of fabric used were observed using a scanning electron microscopy (SEM).more » « less
An official website of the United States government

