- Award ID(s):
- 1516680
- NSF-PAR ID:
- 10394675
- Date Published:
- Journal Name:
- GSA Bulletin
- Volume:
- 132
- Issue:
- 9-10
- ISSN:
- 0016-7606
- Page Range / eLocation ID:
- 1817 to 1828
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The relationships between brittle detachment faulting and ductile shear zones in metamorphic core complexes are often ambiguous. Although it is commonly assumed that these two structures are kinematically linked and genetically related, direct observations of this coupling are rare. Here, we conducted a detailed field investigation to probe the connection between a detachment fault and mylonitic shear zone in the Ruby Mountain–East Humboldt Range metamorphic core complex, northeast Nevada. Field observations, along with new and published geochronology, demonstrate that Oligocene top-to-the-west mylonitic shear zones are crosscut by ca. 17 Ma subvertical basalt dikes, and these dikes are in turn truncated by middle Miocene detachment faults. The detachment faults appear to focus in preexisting weak zones in shaley strata and Mesozoic thrust faults. We interpret that the Oligocene mylonitic shear zones were generated in response to domal upwelling during voluminous plutonism and partial melting, which significantly predated the middle Miocene onset of regional extension and detachment slip. Our model simplifies mechanical issues with low-angle detachment faulting because there was an initial dip to the weak zones exploited by the future detachment-fault zone. This mechanism may be important for many apparent low-angle normal faults in the eastern Great Basin. We suggest that the temporal decoupling of mylonitic shearing and detachment faulting may be significant and underappreciated for many of the metamorphic core complexes in the North American Cordillera. In this case, earlier Eocene–Oligocene buoyant doming may have preconditioned the crust to be reactivated by Miocene extension thus explaining the spatial relationship between structures.more » « less
-
Abstract We use densely spaced campaign GPS observations and laboratory friction experiments on fault rocks from one of the world's most rapidly slipping low‐angle normal faults, the Mai'iu fault in Papua New Guinea, to investigate the nature of interseismic deformation on active low‐angle normal faults. GPS velocities reveal 8.3 ± 1.2 mm/year of horizontal extension across the Mai'iu fault, and are fit well by dislocation models with shallow fault locking (above 2 km depth), or by deeper locking (from ~5–16 km depth) together with shallower creep. Laboratory friction experiments show that gouges from the shallowest portion of the fault zone are predominantly weak and velocity‐strengthening, while fault rocks deformed at greater depths are stronger and velocity‐weakening. Evaluating the geodetic and friction results together with geophysical and microstructural evidence for mixed‐mode seismic and aseismic slip at depth, we find that the Mai'iu fault is most likely strongly locked at depths of ~5–16 km and creeping updip and downdip of this region. Our results suggest that the Mai'iu fault and other active low‐angle normal faults can slip in large (Mw > 7) earthquakes despite near‐surface interseismic creep on frictionally stable clay‐rich gouges.
-
Abstract Low‐angle normal faults (LANFs; dip <30°) accommodate kilometers of crustal extension, yet it remains unclear whether these faults can host large earthquakes or if they predominantly creep aseismically. Most active LANFs typically slip at rates of <3 mm/year. Here, we report U‐Th ages from a series of distinct levels of formerly shallow‐living corals killed by uplift‐induced emergence of the footwall of one of the world's fastest‐slipping LANFs, the Mai'iu fault in Papua New Guinea, which slips at rates of 8–12 mm/year. Coral ages and coastal morphology indicate punctuated episodic uplift events consistent with seismic slip on the Mai'iu fault. Maximum episodic uplift increments of 0.5–1.8 m imply earthquakes of
M w > 7. We present the first coral paleoseismological record of normal fault earthquakes, which constrain the timing and surface uplift patterns of multiple LANF seismic cycles and confirm that LANFs can slip in large (M w > 7) earthquakes. -
Large, destructive earthquakes often propagate along thrust faults including megathrusts. The asymmetric interaction of thrust earthquake ruptures with the free surface leads to sudden variations in fault-normal stress, which affect fault friction. Here, we present full-field experimental measurements of displacements, particle velocities, and stresses that characterize the rupture interaction with the free surface, including the large normal stress reductions. We take advantage of these measurements to investigate the dependence of dynamic friction on transient changes in normal stress, demonstrate that the shear frictional resistance exhibits a significant lag in response to such normal stress variations, and identify a predictive frictional formulation that captures this effect. Properly accounting for this delay is important for simulations of fault slip, ground motion, and associated tsunami excitation.
-
Abstract Tectonic faults fail through a spectrum of slip modes, ranging from slow aseismic creep to rapid slip during earthquakes. Understanding the seismic radiation emitted during these slip modes is key for advancing earthquake science and earthquake hazard assessment. In this work, we use laboratory friction experiments instrumented with ultrasonic sensors to document the seismic radiation properties of slow and fast laboratory earthquakes. Stick‐slip experiments were conducted at a constant loading rate of 8 μm/s and the normal stress was systematically increased from 7 to 15 MPa. We produced a full spectrum of slip modes by modulating the loading stiffness in tandem with the fault zone normal stress. Acoustic emission data were recorded continuously at 5 MHz. We demonstrate that the full continuum of slip modes radiate measurable high‐frequency energy between 100 and 500 kHz, including the slowest events that have peak fault slip rates <100 μm/s. The peak amplitude of the high‐frequency time‐domain signals scales systematically with fault slip velocity. Stable sliding experiments further support the connection between fault slip rate and high‐frequency radiation. Experiments demonstrate that the origin of the high‐frequency energy is fundamentally linked to changes in fault slip rate, shear strain, and breaking of contact junctions within the fault gouge. Our results suggest that having measurements close to the fault zone may be key for documenting seismic radiation properties and fully understanding the connection between different slip modes.