skip to main content

Title: How a strong low-angle normal fault formed: The Whipple detachment, southeastern California
Abstract Many low-angle normal faults (dip ≤30°) accommodate tens of kilometers of crustal extension, but their mechanics remain contentious. Most models for low-angle normal fault slip assume vertical maximum principal stress σ1, leading many authors to conclude that low-angle normal faults are poorly oriented in the stress field (≥60° from σ1) and weak (low friction). In contrast, models for low-angle normal fault formation in isotropic rocks typically assume Coulomb failure and require inclined σ1 (no misorientation). Here, a data-based, mechanical-tectonic model is presented for formation of the Whipple detachment fault, southeastern California. The model honors local and regional geologic and tectonic history and laboratory friction measurements. The Whipple detachment fault formed progressively in the brittle-plastic transition by linking of “minidetachments,” which are small-scale analogs (meters to kilometers in length) in the upper footwall. Minidetachments followed mylonitic anisotropy along planes of maximum shear stress (45° from the maximum principal stress), not Coulomb fractures. They evolved from mylonitic flow to cataclasis and frictional slip at 300–400 °C and ∼9.5 km depth, while fluid pressure fell from lithostatic to hydrostatic levels. Minidetachment friction was presumably high (0.6–0.85), based upon formation of quartzofeldspathic cataclasite and pseudotachylyte. Similar mechanics are inferred for both the minidetachments more » and the Whipple detachment fault, driven by high differential stress (∼150–160 MPa). A Mohr construction is presented with the fault dip as the main free parameter. Using “Byerlee friction” (0.6–0.85) on the minidetachments and the Whipple detachment fault, and internal friction (1.0–1.7) on newly formed Reidel shears, the initial fault dips are calculated at 16°–26°, with σ1 plunging ∼61°–71° northeast. Linked minidetachments probably were not well aligned, and slip on the evolving Whipple detachment fault probably contributed to fault smoothing, by off-fault fracturing and cataclasis, and to formation of the fault core and fractured damage zone. Stress rotation may have occurred only within the mylonitic shear zone, but asymmetric tectonic forces applied to the brittle crust probably caused gradual rotation of σ1 above it as a result of: (1) the upward force applied to the base of marginal North America by buoyant asthenosphere upwelling into an opening slab-free window and/or (2) basal, top-to-the-NE shear traction due to midcrustal mylonitic flow during tectonic exhumation of the Orocopia Schist. The mechanical-tectonic model probably applies directly to low-angle normal faults of the lower Colorado River extensional corridor, and aspects of the model (e.g., significance of anisotropy, stress rotation) likely apply to formation of other strong low-angle normal faults. « less
Award ID(s):
Publication Date:
Journal Name:
GSA Bulletin
Page Range or eLocation-ID:
1817 to 1828
Sponsoring Org:
National Science Foundation
More Like this
  1. The relationships between brittle detachment faulting and ductile shear zones in metamorphic core complexes are often ambiguous. Although it is commonly assumed that these two structures are kinematically linked and genetically related, direct observations of this coupling are rare. Here, we conducted a detailed field investigation to probe the connection between a detachment fault and mylonitic shear zone in the Ruby Mountain–East Humboldt Range metamorphic core complex, northeast Nevada. Field observations, along with new and published geochronology, demonstrate that Oligocene top-to-the-west mylonitic shear zones are crosscut by ca. 17 Ma subvertical basalt dikes, and these dikes are in turn truncated by middle Miocene detachment faults. The detachment faults appear to focus in preexisting weak zones in shaley strata and Mesozoic thrust faults. We interpret that the Oligocene mylonitic shear zones were generated in response to domal upwelling during voluminous plutonism and partial melting, which significantly predated the middle Miocene onset of regional extension and detachment slip. Our model simplifies mechanical issues with low-angle detachment faulting because there was an initial dip to the weak zones exploited by the future detachment-fault zone. This mechanism may be important for many apparent low-angle normal faults in the eastern Great Basin. We suggest thatmore »the temporal decoupling of mylonitic shearing and detachment faulting may be significant and underappreciated for many of the metamorphic core complexes in the North American Cordillera. In this case, earlier Eocene–Oligocene buoyant doming may have preconditioned the crust to be reactivated by Miocene extension thus explaining the spatial relationship between structures.« less
  2. Abstract The spatial distribution and kinematics of intracontinental deformation provide insight into the dominant mode of continental tectonics: rigid-body motion versus continuum flow. The discrete San Andreas fault defines the western North America plate boundary, but transtensional deformation is distributed hundreds of kilometers eastward across the Walker Lane–Basin and Range provinces. In particular, distributed Basin and Range extension has been encroaching westward onto the relatively stable Sierra Nevada block since the Miocene, but the timing and style of distributed deformation overprinting the stable Sierra Nevada crust remains poorly resolved. Here we bracket the timing, magnitude, and kinematics of overprinting Walker Lane and Basin and Range deformation in the Pine Nut Mountains, Nevada (USA), which are the westernmost structural and topographic expression of the Basin and Range, with new geologic mapping and 40Ar/39Ar geochronology. Structural mapping suggests that north-striking normal faults developed during the initiation of Basin and Range extension and were later reactivated as northeast-striking oblique-slip faults following the onset of Walker Lane transtensional deformation. Conformable volcanic and sedimentary rocks, with new ages spanning ca. 14.2 Ma to 6.8 Ma, were tilted 30°–36° northwest by east-dipping normal faults. This relationship demonstrates that dip-slip deformation initiated after ca. 6.8 Ma. Amore »retrodeformed cross section across the range suggests that the range experienced 14% extension. Subsequently, Walker Lane transtension initiated, and clockwise rotation of the Carson domain may have been accommodated by northeast-striking left-slip faults. Our work better defines strain patterns at the western extent of the Basin and Range province across an approximately 150-km-long east-west transect that reveals domains of low strain (∼15%) in the Carson Range–Pine Nut Mountains and Gillis Range surrounding high-magnitude extension (∼150%–180%) in the Singatse and Wassuk Ranges. There is no evidence for irregular crustal thickness variations across this same transect—either in the Mesozoic, prior to extension, or today—which suggests that strain must be accommodated differently at decoupled crustal levels to result in smooth, homogenous crustal thickness values despite the significantly heterogeneous extensional evolution. This example across an ∼150 km transect demonstrates that the use of upper-crust extension estimates to constrain pre-extension crustal thickness, assuming pure shear as commonly done for the Mesozoic Nevadaplano orogenic plateau, may not be reliable.« less
  3. Abstract

    Low‐angle normal faults (LANFs; dip <30°) accommodate kilometers of crustal extension, yet it remains unclear whether these faults can host large earthquakes or if they predominantly creep aseismically. Most active LANFs typically slip at rates of <3 mm/year. Here, we report U‐Th ages from a series of distinct levels of formerly shallow‐living corals killed by uplift‐induced emergence of the footwall of one of the world's fastest‐slipping LANFs, the Mai'iu fault in Papua New Guinea, which slips at rates of 8–12 mm/year. Coral ages and coastal morphology indicate punctuated episodic uplift events consistent with seismic slip on the Mai'iu fault. Maximum episodic uplift increments of 0.5–1.8 m imply earthquakes ofMw > 7. We present the first coral paleoseismological record of normal fault earthquakes, which constrain the timing and surface uplift patterns of multiple LANF seismic cycles and confirm that LANFs can slip in large (Mw > 7) earthquakes.

  4. SUMMARY The Eastern Mediterranean is the most seismically active region in Europe due to the complex interactions of the Arabian, African, and Eurasian tectonic plates. Deformation is achieved by faulting in the brittle crust, distributed flow in the viscoelastic lower-crust and mantle, and Hellenic subduction, but the long-term partitioning of these mechanisms is still unknown. We exploit an extensive suite of geodetic observations to build a kinematic model connecting strike-slip deformation, extension, subduction, and shear localization across Anatolia and the Aegean Sea by mapping the distribution of slip and strain accumulation on major active geological structures. We find that tectonic escape is facilitated by a plate-boundary-like, trans-lithospheric shear zone extending from the Gulf of Evia to the Turkish-Iranian Plateau that underlies the surface trace of the North Anatolian Fault. Additional deformation in Anatolia is taken up by a series of smaller-scale conjugate shear zones that reach the upper mantle, the largest of which is located beneath the East Anatolian Fault. Rapid north–south extension in the western part of the system, driven primarily by Hellenic Trench retreat, is accommodated by rotation and broadening of the North Anatolian mantle shear zone from the Sea of Marmara across the north Aegean Sea, andmore »by a system of distributed transform faults and rifts including the rapidly extending Gulf of Corinth in central Greece and the active grabens of western Turkey. Africa–Eurasia convergence along the Hellenic Arc occurs at a median rate of 49.8 mm yr–1 in a largely trench-normal direction except near eastern Crete where variably oriented slip on the megathrust coincides with mixed-mode and strike-slip deformation in the overlying accretionary wedge near the Ptolemy–Pliny–Strabo trenches. Our kinematic model illustrates the competing roles the North Anatolian mantle shear zone, Hellenic Trench, overlying mantle wedge, and active crustal faults play in accommodating tectonic indentation, slab rollback and associated Aegean extension. Viscoelastic flow in the lower crust and upper mantle dominate the surface velocity field across much of Anatolia and a clear transition to megathrust-related slab pull occurs in western Turkey, the Aegean Sea and Greece. Crustal scale faults and the Hellenic wedge contribute only a minor amount to the large-scale, regional pattern of Eastern Mediterranean interseismic surface deformation.« less
  5. Robles, F. ; Schwartz, J. ; Miranda, E. ; Klepeis, K. ; and Mora-Klepeis, G. (Ed.)
    Ancient basement rocks in Southern California contain mechanical anisotropies that may influence the architecture of Quaternary faulting. We study exposed basement rocks found within the southeastern San Gabriel lithotectonic block with the intention of reconciling the relationship between inherited ductile fabrics and the geometry of Quaternary faults that are part of the San Andreas Fault system. By focusing our study on the southeastern corner of the San Gabriel block we can study the exposed lower- to middle crustal shear zone fabrics near where the Cucamonga Fault and the San Jacinto Fault intersect. The brittle Quaternary Cucamonga Thrust Fault strikes E-W and dips to the north-northeast (35-25°) and is localized at the range front and cuts these older fabrics, however there is also brittle deformation distal from the fault that also affects the sequence of lower- to middle crustal (6-8 kbar) granulite- to upper amphibolite facies mylonite and granulite-facies metasedimentary rocks. Near the Cucamonga Fault, mylonitic fabrics strike E-W and dip northeast (40-50°). Quaternary brittle faults that strike E-W and dip northeast (30-40°) reactivate the mvlonites and slickenlines and record a sinistral, top-to-the-west sense of shear. Investigation of host rocks indicates that they formed in the roots of a continental arcmore »which was active from the Middle Jurassic to Late Cretaceous (172-86 Ma) at 740-800°C. Ductile deformation was associated with granulite-facies metamorphism at approximately 30 km depth during the Late Cretaceous (88-74 Ma) at 730-800 °C. Our work shows that the exhumed Late Cretaceous mylonitic fabrics may have operated as stress guides during Quaternary faulting in the Cucamonga Fault zone. We conclude that these lower crustal fabrics influence the geometry and kinematics of late Cenozoic faulting of the Cucamonga and San Jacinto fault zones.« less