skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sapphire dilatometer cell for measuring the thermal expansion of solids
Capacitive-based dilatometry is used to determine the thermal expansion of solid specimens over a broad temperature range and for the study of structural and thermodynamic phase transitions. It can detect length changes of 0.1 Å or better. Dilatometer cells have been constructed of metals, such as copper or silver, and non-metals, such as silicon and fused silica. Sapphire is a good candidate for the construction of a dilatometer cell. It has excellent thermal conductivity, a well-behaved thermal expansion of moderate magnitude, especially below ∼60 K, and is readily available. The design, fabrication, and testing of a sapphire dilatometer cell are described herein.  more » « less
Award ID(s):
1950282
PAR ID:
10395157
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Review of Scientific Instruments
Volume:
93
Issue:
6
ISSN:
0034-6748
Page Range / eLocation ID:
063903
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a study on the characterization of density as a function of temperature for phase change materials (PCMs). More specifically, in this study we analyze organic alkane PCMs, often called paraffins. PCMs are materials that have the ability to absorb a substantial amount of heat during phase transition from solid to liquid, and therefore prove to be useful in thermal energy storage. The density of paraffin wax PCMs is largely dependent on temperature, and during the phase change process, the density decreases dramatically as the PCM transitions from solid to liquid. Consequently, the PCM experiences dramatic volumetric expansion during this transition. Besides the thermal energy storage uses of PCMs, this volumetric expansion that they exhibit is also used in thermal actuator applications, often referred to as wax motors. While density of PCMs does affect their thermal and mechanical performance, the property is not well-characterized within the literature. In this paper, we examine ten paraffin wax PCMs with varying meltingtemperatures and characterize their densities as a function of temperature. This characterization was done usinga piston and cylinder dilatometer test setup within a temperature-controlled thermal chamber that we designedand validated to the well-characterized density properties of water. The density and temperature relationships werefurther analyzed using piecewise linear regression analysis to develop mathematical models of density as it relates totemperature, which will be useful to those wishing to analyze designs in which PCMs are used, such as in PCM-filled heat sinks. 
    more » « less
  2. While anomalous diffusion coefficients with non-Arrhenius-like temperature dependence are observed in a number of metals, a conclusive comprehensive framework of explanation has not been brought forward to date. Here, we use first-principles calculations based on density functional theory to calculate self-diffusion coefficients in the bcc metals Mo and β-Ti by coupling quasiharmonic transition state theory and large-displacement phonon calculations and show that anharmonicity from thermal expansion is the major reason for the anomalous temperature dependence. We use a modified Debye approach to quantify the thermal expansion over the entire temperature range and introduce a method to relax the vacancy structure in a mechanically unstable crystal such as β-Ti. The effect of thermal expansion is found to be crucial for the nonlinear, non-Arrhenius “anomalous” self-diffusion in both bcc systems, with β-Ti showing a 60% larger relative nonlinearity parameter than Mo. Our results point to temperature dependence in the diffusion prefactor from thermal expansion as the major origin of anomalous self-diffusion. The methodology proposed for β-Ti is general and simple enough to be applicable to other mechanically unstable crystals. 
    more » « less
  3. Sinnott, Susan (Ed.)
    Single crystalline sapphire (-) possesses superior mechanical, thermal, chemical, and optical properties over a wide range of temperatures and pressure conditions, allowing it for a broad spectrum of industrial applications. For the past few decades, research has aimed at comprehensive understanding of its plastic deformation mechanisms under mechanical loading. In this study, we have employed molecular dynamics (MD) simulations to study rhombohedral twinning of sapphire, which is of critical importance in understanding the plastic deformation of sapphire as one of most commonly observed deformation modes. Since the critical resolved shear stress (CRSS) plays a pivotal role in describing the activation of slip systems, it is adopted in this study as the key parameter for analysis. The CRSS is calculated during the uniaxial compression test of a cubic sapphire crystal, oriented to exclusively activate rhombohedral twinning deformation, under simulation conditions such as temperature, strain rate, and system size. Furthermore, a theoretical model of CRSS is constructed based on theories of thermal activation processes, then empirically fitted to CRSS data gathered from the MD simulations. This model accurately captures the relationships between CRSS and external parameters including temperature, strain rate, and system size and shows excellent agreements with the simulation results. 
    more » « less
  4. Internal macropores in silicon/graphene/graphene nanoribbon (Si/Gr/GNR) hybrid anodes by facile thermal removal of sacrificial polymer, polyvinyl alcohol (PVA), are incorporated, to mitigate the volume expansion of silicon and to increase the silicon utilization and rate capability of the anode. The resulting Si/Gr/GNR hybrid anodes give a high capacity of 1874 mAh g−1at 0.1 C, based on total weight of the electrode including binder and carbon, as well as great capacity retention of above 800 mAh g−1after 350 cycles at 0.3 C. The mitigation of volume expansion by carrying out in situ thickness change measurements of small pouch cells via a dilatometer is further demonstrated, exhibiting the saturation of volume expansion below 40% after 100 cycles due to the incorporation of the macropores. Moreover, Si/Gr/GNR anodes with pores exhibit superior rate capability, yielding 1,250 mAh g−1at 2 C rate due to the effective network of graphene sheets and GNRs. 
    more » « less
  5. Although there has been significant interest in the novel material properties of bio-inspired nanostructures, engineering them to become mechanically durable remains a significant challenge. This work demonstrates the fabrication of sapphire nanostructures with anti-glare, anti-fogging, anti-dust and scratch-resistant properties. The fabricated nanostructures demonstrated a period of 330 nm and an aspect ratio of 2.1, the highest reported for sapphire thus far. The nanostructured sapphire sample exhibited broadband and omnidirectional antireflection properties, with an enhanced transmission of up to 95.8% at a wavelength of 1360 nm. The sapphire nanostructures also exhibited enhanced wetting performance and could mitigate fogging from water condensation or repel water droplets. Furthermore, owing to their sharp features, the fabricated structures could prevent particulate adhesion and maintain a 98.7% dust-free surface area solely using gravity. Furthermore, nanoindentation and scratch tests indicated that the sapphire nanostructures have an indentation modulus and hardness of 182 GPa and 3.7 GPa, respectively, which are similar to those of bulk glass and scratch-resistant metals such as tungsten. These sapphire nanostructures can be fabricated using high-throughput nanomanufacturing techniques and can find applications in scratch-resistant optics for photonics, electronic displays, and protective windows. 
    more » « less