skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Local Structure of Stochastic Parker Spirals in the Solar Wind
Abstract We present a Langevin model describing the local structure of the interplanetary magnetic field lines. It is established on the basis of the analysis of the Lagrangian properties of strong Alfvénic turbulence, which provides a new perspective on the critical balance condition. The model is consistent with the k ∥ − 2 spectrum of magnetic fluctuations derived from in situ measurements. We show that the magnetic field line diffusivity at the spacecraft position can be inferred from the wavelet analysis of one-point measurements of the fluctuating magnetic fields in the solar wind independently of the three-dimensional nature of the anisotropy.  more » « less
Award ID(s):
2149771
PAR ID:
10395443
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
941
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
58
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent analysis of energetic electron measurements from the Magnetic Electron Ion Spectrometer instruments onboard the Van Allen Probes showed a local time variation of the equatorial electron intensity in the Earth’s inner radiation belt. The local time asymmetry was interpreted as evidence of drift shell distortion by a large-scale electric field. It was also demonstrated that the inclusion of a simple dawn-to-dusk electric field model improved the agreement between observations and theoretical expectations. Yet, exactly what drives this electric field was left unexplained. We combine in-situ field and particle observations, together with a physics-based coupled model, the Rice Convection Model (RCM) Coupled Thermosphere-Ionosphere-Plasmasphere-electrodynamics (CTIPe), to revisit the local time asymmetry of the equatorial electron intensity observed in the innermost radiation belt. The study is based on the dawn-dusk difference in equatorial electron intensity measured at L = 1.30 during the first 60 days of the year 2014. Analysis of measured equatorial electron intensity in the 150–400 keV energy range, in-situ DC electric field measurements and wind dynamo modeling outputs provide consistent estimates of the order of 6–8 kV for the average dawn-to-dusk electric potential variation. This suggests that the dynamo electric fields produced by tidal motion of upper atmospheric winds flowing across Earth’s magnetic field lines - the quiet time ionospheric wind dynamo - are the main drivers of the drift shell distortion in the Earth’s inner radiation belt. 
    more » « less
  2. Abstract Stealth coronal mass ejections (CMEs) are eruptions from the Sun that are not associated with appreciable low-coronal signatures. Because they often cannot be linked to a well-defined source region on the Sun, analysis of their initial magnetic configuration and eruption dynamics is particularly problematic. In this article, we address this issue by undertaking the first attempt at predicting the magnetic fields of a stealth CME that erupted in 2020 June from the Earth-facing Sun. We estimate its source region with the aid of off-limb observations from a secondary viewpoint and photospheric magnetic field extrapolations. We then employ the Open Solar Physics Rapid Ensemble Information modeling suite to evaluate its early evolution and forward model its magnetic fields up to Parker Solar Probe, which detected the CME in situ at a heliocentric distance of 0.5 au. We compare our hindcast prediction with in situ measurements and a set of flux-rope reconstructions, obtaining encouraging agreement on arrival time, spacecraft-crossing location, and magnetic field profiles. This work represents a first step toward reliable understanding and forecasting of the magnetic configuration of stealth CMEs and slow streamer-blowout events. 
    more » « less
  3. Electron paramagnetic resonance of Cr3+ ions in β-Ga2O3 is investigated using terahertz spectroscopic ellipsometry under magnetic field sweeping, a technique that enables the polarization resolving capabilities of ellipsometry for magnetic resonance measurements. We employed a single-crystal chromium-doped β-Ga2O3 sample, grown by the Czochralski method, and performed ellipsometry measurements at magnetic field strengths ranging from 2 to 8 T, at frequencies from 82 to 125 and 190 to 230 GHz, and at a temperature of 15 K. Analysis of the frequency-field diagrams derived from all Mueller matrix elements allowed us to differentiate between the effects of electron spin Zeeman splitting and zero-field splitting and to accurately determine the anisotropic Zeeman splitting g-tensor and the zero-field splitting parameters. Our results confirm that Cr3+ ions predominantly substitute into octahedral gallium sites. Line shape analysis of Mueller matrix element spectra using the Bloch–Brillouin model provides the spin volume concentration of Cr3+ sites, showing very good agreement with results from chemical analysis by inductively coupled plasma-optical emission spectroscopy and suggesting minimal occupation of sites with inactive electron paramagnetic resonance. This study enhances our understanding of the magnetic and electronic properties of chromium-doped β-Ga2O3 and demonstrates the effectiveness of high-frequency/high-field electron paramagnetic resonance generalized spectroscopic ellipsometry for characterizing defects in ultrawide-bandgap semiconductors. 
    more » « less
  4. We report on terahertz (THz) electron paramagnetic resonance generalized spectroscopic ellipsometry (THz-EPR-GSE). Measurements of field and frequency dependencies of magnetic response due to spin transitions associated with nitrogen defects in 4H-SiC are shown as an example. THz-EPR-GSE dispenses with the need of a cavity, permits independently scanning field and frequency parameters, and does not require field or frequency modulation. We investigate spin transitions of hexagonal ( h) and cubic ( k) coordinated nitrogen including coupling with its nuclear spin (I = 1), and we propose a model approach for the magnetic susceptibility to account for the spin transitions. From the THz-EPR-GSE measurements, we can fully determine polarization properties of the spin transitions, and we can obtain the k coordinated nitrogen g and hyperfine splitting parameters using magnetic field and frequency dependent Lorentzian oscillator line shape functions. Magnetic-field line broadening presently obscures access to h parameters. We show that measurements of THz-EPR-GSE at positive and negative fields differ fundamentally and hence provide additional information. We propose frequency-scanning THz-EPR-GSE as a versatile method to study properties of spins in solid state materials. 
    more » « less
  5. null (Ed.)
    ABSTRACT Of all the factors that influence star formation, magnetic fields are perhaps the least well understood. The goal of this paper is to characterize the 3D magnetic field properties of nearby molecular clouds through various methods of statistically analysing maps of polarized dust emission. Our study focuses on nine clouds, with data taken from the Planck Sky Survey as well as data from the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry observations of Vela C. We compare the distributions of polarization fraction (p), dispersion in polarization angles ($$\mathcal {S}$$), and hydrogen column density (NH) for each of our targeted clouds. To broaden the scope of our analysis, we compare the distributions of our clouds’ polarization observables with measurements from synthetic polarization maps generated from numerical simulations. We also use the distribution of polarization fraction measurements to estimate the inclination angle of each cloud’s cloud-scale magnetic field. We obtain a range of inclination angles associated with our clouds, varying from 16○ to 69○. We establish inverse correlations between p and both $$\mathcal {S}$$ and NH in almost every cloud, but we are unable to establish a statistically robust $$\mathcal {S}$$ versus NH trend. By comparing the results of these different statistical analysis techniques, we are able to propose a more comprehensive view of each cloud’s 3D magnetic field properties. These detailed cloud analyses will be useful in the continued studies of cloud-scale magnetic fields and the ways in which they affect star formation within these molecular clouds. 
    more » « less