Data poisoning attacks, in which an adversary corrupts a training set with the goal of inducing specific desired mistakes, have raised substantial concern: even just the possibility of such an attack can make a user no longer trust the results of a learning system. In this work, we analyze when strong robustness guarantees can be achieved even in the face of such attacks. We define and show how to provide robustly-reliable predictions, in which the predicted label is guaranteed to be correct so long as the adversary has not exceeded a given corruption budget, even in the presence of instance targeted attacks, where the adversary aims to cause a failure on specific test examples. Our guarantees are substantially stronger than those in prior approaches, which were only able to provide certificates that the prediction of the learning algorithm does not change, as opposed to certifying that the prediction is correct, as we do here. Remarkably, we provide a complete characterization of learnability in this setting, in particular, nearly-tight matching upper and lower bounds on the region that can be certified, as well as efficient algorithms for computing this region given an ERM oracle. Moreover, for the case of linear separators over logconcave distributions, we provide efficient truly polynomial time algorithms (i.e., non-oracle algorithms) for such robustly-reliable predictions. We also extend these results to the active setting where the algorithm adaptively asks for labels of specific informative examples, and the difficulty is that the adversary might even be adaptive to this interaction, as well as to the agnostic learning setting where there is no perfect classifier even over the uncorrupted data.
more »
« less
Breaking Fair Binary Classification with Optimal Flipping Attacks
Minimizing risk with fairness constraints is one of the popular approaches to learning a fair classifier. Recent works showed that this approach yields an unfair classifier if the training set is corrupted. In this work, we study the minimum amount of data corruption required for a successful flipping attack. First, we find lower/upper bounds on this quantity and show that these bounds are tight when the target model is the unique unconstrained risk minimizer. Second, we propose a computationally efficient data poisoning attack algorithm that can compromise the performance of fair learning algorithms.
more »
« less
- Award ID(s):
- 2003129
- NSF-PAR ID:
- 10395562
- Date Published:
- Journal Name:
- 2022 IEEE International Symposium on Information Theory (ISIT)
- Page Range / eLocation ID:
- 1453 to 1458
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the problem of classifier derandomization in machine learning: given a stochastic binary classifier f:X→[0,1], sample a deterministic classifier f̂ :X→{0,1} that approximates the output of f in aggregate over any data distribution. Recent work revealed how to efficiently derandomize a stochastic classifier with strong output approximation guarantees, but at the cost of individual fairness -- that is, if f treated similar inputs similarly, f̂ did not. In this paper, we initiate a systematic study of classifier derandomization with metric fairness guarantees. We show that the prior derandomization approach is almost maximally metric-unfair, and that a simple ``random threshold'' derandomization achieves optimal fairness preservation but with weaker output approximation. We then devise a derandomization procedure that provides an appealing tradeoff between these two: if f is α-metric fair according to a metric d with a locality-sensitive hash (LSH) family, then our derandomized f̂ is, with high probability, O(α)-metric fair and a close approximation of f. We also prove generic results applicable to all (fair and unfair) classifier derandomization procedures, including a bias-variance decomposition and reductions between various notions of metric fairness.more » « less
-
null (Ed.)In a poisoning attack, an adversary with control over a small fraction of the training data attempts to select that data in a way that induces a corrupted model that misbehaves in favor of the adversary. We consider poisoning attacks against convex machine learning models and propose an efficient poisoning attack designed to induce a specified model. Unlike previous model-targeted poisoning attacks, our attack comes with provable convergence to any attainable target classifier. The distance from the induced classifier to the target classifier is inversely proportional to the square root of the number of poisoning points. We also provide a lower bound on the minimum number of poisoning points needed to achieve a given target classifier. Our method uses online convex optimization, so finds poisoning points incrementally. This provides more flexibility than previous attacks which require a priori assumption about the number of poisoning points. Our attack is the first model-targeted poisoning attack that provides provable convergence for convex models, and in our experiments, it either exceeds or matches state-of-the-art attacks in terms of attack success rate and distance to the target model.more » « less
-
Given an algorithmic predictor that is "fair" on some source distribution, will it still be fair on an unknown target distribution that differs from the source within some bound? In this paper, we study the transferability of statistical group fairness for machine learning predictors (i.e., classifiers or regressors) subject to bounded distribution shifts. Such shifts may be introduced by initial training data uncertainties, user adaptation to a deployed predictor, dynamic environments, or the use of pre-trained models in new settings. Herein, we develop a bound that characterizes such transferability, flagging potentially inappropriate deployments of machine learning for socially consequential tasks. We first develop a framework for bounding violations of statistical fairness subject to distribution shift, formulating a generic upper bound for transferred fairness violations as our primary result. We then develop bounds for specific worked examples, focusing on two commonly used fairness definitions (i.e., demographic parity and equalized odds) and two classes of distribution shift (i.e., covariate shift and label shift). Finally, we compare our theoretical bounds to deterministic models of distribution shift and against real-world data, finding that we are able to estimate fairness violation bounds in practice, even when simplifying assumptions are only approximately satisfied.more » « less
-
As machine learning (ML) algorithms are increasingly used in high-stakes applications, concerns have arisen that they may be biased against certain social groups. Although many approaches have been proposed to make ML models fair, they typically rely on the assumption that data distributions in training and deployment are identical. Unfortunately, this is commonly violated in practice and a model that is fair during training may lead to an unexpected outcome during its deployment. Although the problem of designing robust ML models under dataset shifts has been widely studied, most existing works focus only on the transfer of accuracy. In this paper, we study the transfer of both fairness and accuracy under domain generalization where the data at test time may be sampled from never-before-seen domains. We first develop theoretical bounds on the unfairness and expected loss at deployment, and then derive sufficient conditions under which fairness and accuracy can be perfectly transferred via invariant representation learning. Guided by this, we design a learning algorithm such that fair ML models learned with training data still have high fairness and accuracy when deployment environments change. Experiments on real-world data validate the proposed algorithm.more » « less