An ice storm simulation was performed at the Hubbard Brook Experimental Forest to evaluate impacts of these extreme weather events on northern hardwood forests. Water was pumped from the main branch of Hubbard Brook and sprayed above the forest canopy in subfreezing conditions so that it rained down and froze on contact with trees. The experiment included five ice storm intensities (0, 6.4, 12.7 and 19.1 mm radial ice accretion) applied in a single year, and one ice storm intensity (12.7 mm) applied in two consecutive years. Measurements of soil respiration were made with an infrared gas analyzer during the snow-free season before and after the ice was applied. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.
more »
« less
Hubbard Brook Experimental Forest: Ice Storm Experiment (ISE) Canopy Hemispherical Photos
Abstract An ice storm simulation was performed at the Hubbard Brook Experimental Forest to evaluate impacts of these extreme weather events on northern hardwood forests. Water was pumped from the main branch of Hubbard Brook and sprayed above the forest canopy in subfreezing conditions so that it rained down and froze on contact with trees. The experiment consisted of five treatments, including a control (no ice) and three target levels of radial ice accretion: low (6.4 mm), mid (12.7 mm), and high (19.0 mm). Two of the mid-level treatment plots (midx2) were iced in back-to-back years to evaluate impacts of consecutive storms. This dataset consists of hemispherical photographs of the forest canopy with leaves on and off the trees before and after the various ice treatments. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.
more »
« less
- Award ID(s):
- 1637685
- PAR ID:
- 10395910
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An ice storm simulation was performed at the Hubbard Brook Experimental Forest to evaluate impacts of these extreme weather events on northern hardwood forests. Water was pumped from the main branch of Hubbard Brook and sprayed above the forest canopy in subfreezing conditions so that it rained down and froze on contact with trees. The experiment included five ice storm intensities (0, 6.4, 12.7 and 19.1 mm radial ice accretion) applied in a single year, and one ice storm intensity (12.7 mm) applied in two consecutive years. Samples of soil solution chemistry were collected with lysimeters throughout the year before and after the ice was applied. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.more » « less
-
To evaluate the effects of ice storm disturbance on forest canopy structure and complexity terrestrial lidar data were collected within the Hubbard Brook Ice Storm Experiment plots starting in 2015 (prior to ice treatment) and annually thereafter. Data were collected using a ground-based portable canopy lidar (PCL) system during the growing season in August of each year along 5 permanently marked 30 m transects in each 20 x 30 m ISE plot. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.more » « less
-
Coarse Woody Debris of the Ice Storm Experiment (ISE) plots at the Hubbard Brook Experimental ForestThe ice storm experiment was a novel experimental approach creating a suite of ice storms in a mature hardwood forest in New Hampshire, USA. The experiment included five ice storm intensities (0, 6.4, 12.7, and 19.1 mm radial ice accretion) applied in a single year, and one ice storm intensity (12.7 mm) applied in two consecutive years. This dataset quantifies the coarse woody debris transferred from the forest canopy to the soil under the different icing conditions. In this forest, little damage occurred below 6.4 mm radial ice accretion, moderate damage occurred with up to 12.7 mm of accretion, and significant branch breakage and canopy damage occurred with 19.1 mm of ice. The icing in consecutive years demonstrated an interactive effect of ice storm frequency and severity such that some branches damaged in the first year of icing appeared to remain in the canopy and then fall to the ground in the second year of icing. These results have implications for National Weather Service ice storm warning levels, and they provide a quantitative assessment of ice-load related inputs of forest debris that will be useful to municipalities creating response plans for current and future ice storms. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.more » « less
-
Herbivory by terrestrial gastropods, particularly Arion sp. (a non-native slug), can alter epiphytic lichen communities; however, little is known about this interaction in forests of North America. We used surveys of grazing damage to lichen thalli in the field on 52 plots within Hubbard Brook Experimental Forest, NH. Grazing damage by terrestrial gastropods was widespread, though few sites had severe grazing. Grazing damage was significantly higher on flatter terrain and on broadleaf trees. Overall, lichen communities in the HBEF were moderately impacted by terrestrial gastropod grazing, but potential effects of the non-native slugs at higher elevations and impacts on lichen health of widespread, moderate grazing deserve further study. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. These data were analyzed and published in: Clyne, Ailís B, Natalie L Cleavitt, and Timothy J Fahey. 2019. “Terrestrial Gastropod Grazing On Macrolichens In A Northern Broadleaf–Conifer Forest”. Northeastern Naturalist 26(2): 261 - 274. https://bioone.org/journals/Northeastern-Naturalist/volume-26/issue-2/045.026.0203/Terrestrial-Gastropod-Grazing-on-Macrolichens-in-a-Northern-BroadleafConifer-Forest/10.1656/045.026.0203.full.more » « less