skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Restricted Nonlinear Scales of Turbulent Secondary Flows Over Spanwise Heterogeneous Roughness
The natural scale separation in the restricted nonlinear (RNL) modelling approach is exploited to build upon recent studies, e.g., Wangsawijaya (2020), that have used scale separation to provide insight into mechanisms underlying secondary motions in turbulent flow over spanwise heterogeneous roughness. In the RNL decomposition the large-scale comprises the streamwise averaged mean and the small-scales are defined through a dynamical restriction that leads to computational tractability, while providing good agreement with salient flow features. In agreement with the experimental work, our results indicate that energy of the large-scales is amplified over the low roughness region due to the secondary flow. The small-scales are shown to play a dominant role in the Reynolds stresses responsible for generation of the secondary flow. Conditional averaging of the RNL mean field reveals stronger momentum pathways over low roughness regions experiencing downwash in instances that differ from the time-averaged trends. Further analysis of the large scale indicates that meandering of low speed streaks in the RNL flow is in response to secondary flow momentum mixing.  more » « less
Award ID(s):
1920103
PAR ID:
10396183
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
12 th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
Page Range / eLocation ID:
148
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Aiming to study the rough-wall turbulent boundary layer structure over differently arranged roughness elements, an experimental study was conducted on flows with regular and random roughness. Varying planform densities of truncated cone roughness elements in a square staggered pattern were investigated. The same planform densities were also investigated in random arrangements. Velocity statistics were measured via two-component laser Doppler velocimetry and stereoscopic particle image velocimetry. Friction velocity, thickness, roughness length and zero-plane displacement, determined from spatially averaged flow statistics, showed only minor differences between the regular and random arrangements at the same density. Recent a priori morphometric and statistical drag prediction methods were evaluated against experimentally determined roughness length. Observed differences between regular and random surface flow parameters were due to the presence of secondary flows which manifest as high-momentum pathways and low-momentum pathways in the streamwise velocity. Contrary to expectation, these secondary flows were present over the random surfaces and not discernible over the regular surfaces. Previously identified streamwise-coherent spanwise roughness heterogeneity does not seem to be present, suggesting that such roughness heterogeneity is not necessary to sustain secondary flows. Evidence suggests that the observed secondary flows were initiated at the front edge of the roughness and sustained over irregular roughness. Due to the secondary flows, local turbulent boundary layer profiles do not scale with local wall shear stress but appear to scale with local turbulent shear stress above the roughness canopy. Additionally, quadrant analysis shows distinct changes in the populations of ejection and sweep events. 
    more » « less
  2. A large eddy simulation (LES) is performed for a turbulent open channel flow over a porous sediment bed at permeability Reynolds number of ReK∼2.56 (Reτ = 270) representative of aquatic systems. A continuum approach based on the upscaled, volume-averaged Navier−Stokes (VaNS) equations is used by defining smoothly varying porosity across the sediment water interface (SWI) and modeling the drag force in the porous bed using a modified Ergun equation with Forchheimer corrections for inertial terms. The results from the continuum approach are compared with a pore-resolved direct numerical simulation (PR-DNS) in which turbulent flow over a randomly packed sediment bed of monodispersed particles is investigated [Karra et al.,J. Fluid Mech. 971, A23 (2023)] A spatially varying porosity profile generated from the pore-resolved DNS is used in the continuum approach. Mean flow, Reynolds stress statistics, and net momentum exchange between the freestream and the porous bed are compared between the two studies, showing reasonably good agreement. Small deviations within the transitional region between the sediment bed and the freestream as compared to the PR-DNS results are attributed to the local protrusions of particles in a randomly packed bed that are absent in the continuum approach but are present in the PR-DNS. A better representation of the effective permeability in the top transition layer that accounts for roughness effect of exposed particles is necessary. The continuum approach significantly reduces the computational cost, thereby making it suitable to study hyporheic exchange of mass and momentum in large scale aquatic domains with combined influence of bedform and bed roughness. 
    more » « less
  3. Large Eddy Simulations (LES) of neutral flow over regular arrays of cuboids are conducted to explore connections between momentum (z 0m ) and scalar (z 0s ) roughness lengths in urban environments, and how they are influenced by surface geometry. As LES resolves the obstacles but not the micro‐scale boundary layers attached to them, the aforementioned roughness lengths are analyzed at two distinct spatial scales. At the micro‐scale (roughness of individual facets, e.g. roofs), it is assumed that both momentum and scalar transfer are governed by accepted arguments for smooth walls that form the basis for the LES wall model. At the macro‐scale, the roughness lengths are representative of the aggregate effects of momentum and scalar transfer over the resolved roughness elements of the whole surface, and hence they are directly computed from the LES. The results indicate that morphologically‐based parameterizations for macro‐scale z 0m are adequate overall. The relation between the momentum and scalar macro‐roughness values, as conventionally represented by log(z 0m /z 0s ) and assumed to scale with urn:x-wiley:00359009:media:qj3839:qj3839-math-0001 (where Re * is a roughness Reynolds number), is then interpreted using surface renewal theory (SRT). SRT predicts n = 1/4 when only Kolmogorov‐scale eddies dominate the scalar exchange, whereas n = 1/2 is predicted when large eddies limit the renewal dynamics. The latter is found to better capture the LES results. However, both scaling relations indicate that z 0s decreases when z 0m increases for typical urban geometries and scales. This is opposite to how their relation is usually modeled for urban canopies (i.e. z 0s /z 0m is a fixed value smaller than unity). 
    more » « less
  4. In the coastal ocean, interactions of waves and currents with large roughness elements, similar in size to wave orbital excursions, generate drag and dissipate energy. These boundary layer dynamics differ significantly from well-studied small-scale roughness. To address this problem, we derived spatially and phase-averaged momentum equations for combined wave–current flows over rough bottoms, including the canopy layer containing obstacles. These equations were decomposed into steady and oscillatory parts to investigate the effects of waves on currents, and currents on waves. We applied this framework to analyse large-eddy simulations of combined oscillatory and steady flows over hemisphere arrays (diameter $$D$$ ), in which current ( $$U_c$$ ), wave velocity ( $$U_w$$ ) and period ( $$T$$ ) were varied. In the steady momentum budget, waves increase drag on the current, and this is balanced by the total stress at the canopy top. Dispersive stresses from oscillatory flow around obstacles are increasingly important as $$U_w/U_c$$ increases. In the oscillatory momentum budget, acceleration in the canopy is balanced by pressure gradient, added-mass and form drag forces; stress gradients are small compared to other terms. Form drag is increasingly important as the Keulegan–Carpenter number $$KC=U_wT/D$$ and $$U_c/U_w$$ increase. Decomposing the drag term illustrates that a quadratic relationship predicts the observed dependences of steady and oscillatory drag on $$U_c/U_w$$ and $KC$ . For large roughness elements, bottom friction is well represented by a friction factor ( $$f_w$$ ) defined using combined wave and current velocities in the canopy layer, which is proportional to drag coefficient and frontal area per unit plan area, and increases with $KC$ and $$U_c/U_w$$ . 
    more » « less
  5. null (Ed.)
    Abstract A companion paper by Lund et al. (2020) employed a compressible model to describe the evolution of mountain waves arising due to increasing flow with time over the Southern Andes, their breaking, secondary gravity waves and acoustic waves arising from these dynamics, and their local responses. This paper describes the mountain wave, secondary gravity wave, and acoustic wave vertical fluxes of horizontal momentum, and the local and large-scale three-dimensional responses to gravity breaking and wave/mean-flow interactions accompanying this event. Mountain wave and secondary gravity wave momentum fluxes and deposition vary strongly in space and time due to variable large-scale winds and spatially-localized mountain wave and secondary gravity wave responses. Mountain wave instabilities accompanying breaking induce strong, local, largely-zonal forcing. Secondary gravity waves arising from mountain wave breaking also interact strongly with large-scale winds at altitudes above ~80km. Together, these mountain wave and secondary gravity wave interactions reveal systematic gravity-wave/mean-flow interactions having implications for both mean and tidal forcing and feedbacks. Acoustic waves likewise achieve large momentum fluxes, but typically imply significant responses only at much higher altitudes. 
    more » « less