skip to main content


Title: Open-World Semi-Supervised Learning
A fundamental limitation of applying semi-supervised learning in real-world settings is the assumption that unlabeled test data contains only classes previously encountered in the labeled training data. However, this assumption rarely holds for data in-the-wild, where instances belonging to novel classes may appear at testing time. Here, we introduce a novel open-world semi-supervised learning setting that formalizes the notion that novel classes may appear in the unlabeled test data. In this novel setting, the goal is to solve the class distribution mismatch between labeled and unlabeled data, where at the test time every input instance either needs to be classified into one of the existing classes or a new unseen class needs to be initialized. To tackle this challenging problem, we propose ORCA, an end-to-end deep learning approach that introduces uncertainty adaptive margin mechanism to circumvent the bias towards seen classes caused by learning discriminative features for seen classes faster than for the novel classes. In this way, ORCA reduces the gap between intra-class variance of seen with respect to novel classes. Experiments on image classification datasets and a single-cell annotation dataset demonstrate that ORCA consistently outperforms alternative baselines, achieving 25% improvement on seen and 96% improvement on novel classes of the ImageNet dataset.  more » « less
Award ID(s):
1835598
NSF-PAR ID:
10396196
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Learning Representations (ICLR)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    3D object detection is an important yet demanding task that heavily relies on difficult to obtain 3D annotations. To reduce the required amount of supervision, we propose 3DIoUMatch, a novel semi-supervised method for 3D object detection applicable to both indoor and outdoor scenes. We leverage a teacher-student mutual learning framework to propagate information from the labeled to the unlabeled train set in the form of pseudo-labels. However, due to the high task complexity, we observe that the pseudo-labels suffer from significant noise and are thus not directly usable. To that end, we introduce a confidence-based filtering mechanism, inspired by FixMatch. We set confidence thresholds based upon the predicted objectness and class probability to filter low-quality pseudo-labels. While effective, we observe that these two measures do not sufficiently capture localization quality. We therefore propose to use the estimated 3D IoU as a localization metric and set category-aware self-adjusted thresholds to filter poorly localized proposals. We adopt VoteNet as our backbone detector on indoor datasets while we use PV-RCNN on the autonomous driving dataset, KITTI. Our method consistently improves state-of-the-art methods on both ScanNet and SUN-RGBD benchmarks by significant margins under all label ratios (including fully labeled setting). For example, when training using only 10% labeled data on ScanNet, 3DIoUMatch achieves 7.7 absolute improvement on mAP@0.25 and 8.5 absolute improvement on mAP@0.5 upon the prior art. On KITTI, we are the first to demonstrate semi-supervised 3D object detection and our method surpasses a fully supervised baseline from 1.8% to 7.6% under different label ratio and categories. 
    more » « less
  2. Few-shot classification (FSC) requires training models using a few (typically one to five) data points per class. Meta learning has proven to be able to learn a parametrized model for FSC by training on various other classification tasks. In this work, we propose PLATINUM (semi-suPervised modeL Agnostic meTa-learnIng usiNg sUbmodular Mutual information), a novel semi-supervised model agnostic meta-learning framework that uses the submodular mutual information (SMI) functions to boost the performance of FSC. PLATINUM leverages unlabeled data in the inner and outer loop using SMI functions during meta-training and obtains richer meta-learned parameterizations for meta-test. We study the performance of PLATINUM in two scenarios - 1) where the unlabeled data points belong to the same set of classes as the labeled set of a certain episode, and 2) where there exist out-of-distribution classes that do not belong to the labeled set. We evaluate our method on various settings on the miniImageNet, tieredImageNet and Fewshot-CIFAR100 datasets. Our experiments show that PLATINUM outperforms MAML and semi-supervised approaches like pseduo-labeling for semi-supervised FSC, especially for small ratio of labeled examples per class. 
    more » « less
  3. null (Ed.)
    In traditional graph learning tasks, such as node classification, learning is carried out in a closed-world setting where the number of classes and their training samples are provided to help train models, and the learning goal is to correctly classify unlabeled nodes into classes already known. In reality, due to limited labeling capability and dynamic evolving of networks, some nodes in the networks may not belong to any existing/seen classes, and therefore cannot be correctly classified by closed-world learning algorithms. In this paper, we propose a new open-world graph learning paradigm, where the learning goal is to not only classify nodes belonging to seen classes into correct groups, but also classify nodes not belonging to existing classes to an unseen class. The essential challenge of the openworld graph learning is that (1) unseen class has no labeled samples, and may exist in an arbitrary form different from existing seen classes; and (2) both graph feature learning and prediction should differentiate whether a node may belong to an existing/seen class or an unseen class. To tackle the challenges, we propose an uncertain node representation learning approach, using constrained variational graph autoencoder networks, where the label loss and class uncertainty loss constraints are used to ensure that the node representation learning are sensitive to unseen class. As a result, node embedding features are denoted by distributions, instead of deterministic feature vectors. By using a sampling process to generate multiple versions of feature vectors, we are able to test the certainty of a node belonging to seen classes, and automatically determine a threshold to reject nodes not belonging to seen classes as unseen class nodes. Experiments on real-world networks demonstrate the algorithm performance, comparing to baselines. Case studies and ablation analysis also show the rationale of our design for open-world graph learning. 
    more » « less
  4. Radianti, Jaziar ; Dokas, Ioannis ; Lalone, Nicolas ; Khazanchi, Deepak (Ed.)
    The shared real-time information about natural disasters on social media platforms like Twitter and Facebook plays a critical role in informing volunteers, emergency managers, and response organizations. However, supervised learning models for monitoring disaster events require large amounts of annotated data, making them unrealistic for real-time use in disaster events. To address this challenge, we present a fine-grained disaster tweet classification model under the semi-supervised, few-shot learning setting where only a small number of annotated data is required. Our model, CrisisMatch, effectively classifies tweets into fine-grained classes of interest using few labeled data and large amounts of unlabeled data, mimicking the early stage of a disaster. Through integrating effective semi-supervised learning ideas and incorporating TextMixUp, CrisisMatch achieves performance improvement on two disaster datasets of 11.2% on average. Further analyses are also provided for the influence of the number of labeled data and out-of-domain results. 
    more » « less
  5. Chaudhuri, Kamalika ; Jegelka, Stefanie ; Song, Le ; Szepesyari, Csaba ; Niu, Gang ; Sabato, Sivan (Ed.)
    Few-shot classification (FSC) requires training models using a few (typically one to five) data points per class. Meta-learning has proven to be able to learn a parametrized model for FSC by training on various other classification tasks. In this work, we propose PLATINUM (semi-suPervised modeL Agnostic meTa learnIng usiNg sUbmodular Mutual information ), a novel semi-supervised model agnostic meta learning framework that uses the submodular mutual in- formation (SMI) functions to boost the perfor- mance of FSC. PLATINUM leverages unlabeled data in the inner and outer loop using SMI func- tions during meta-training and obtains richer meta- learned parameterizations. We study the per- formance of PLATINUM in two scenarios - 1) where the unlabeled data points belong to the same set of classes as the labeled set of a cer- tain episode, and 2) where there exist out-of- distribution classes that do not belong to the la- beled set. We evaluate our method on various settings on the miniImageNet, tieredImageNet and CIFAR-FS datasets. Our experiments show that PLATINUM outperforms MAML and semi- supervised approaches like pseduo-labeling for semi-supervised FSC, especially for small ratio of labeled to unlabeled samples. 
    more » « less