skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning Backward Compatible Embeddings
Embeddings, low-dimensional vector representation of objects, are fundamental in building modern machine learning systems. In industrial settings, there is usually an embedding team that trains an embedding model to solve intended tasks (e.g., product recommendation). The produced embeddings are then widely consumed by consumer teams to solve their unintended tasks (e.g., fraud detection). However, as the embedding model gets updated and retrained to improve performance on the intended task, the newly-generated embeddings are no longer compatible with the existing consumer models. This means that historical versions of the embeddings can never be retired or all consumer teams have to retrain their models to make them compatible with the latest version of the embeddings, both of which are extremely costly in practice. Here we study the problem of embedding version updates and their backward compatibility. We formalize the problem where the goal is for the embedding team to keep updating the embedding version, while the consumer teams do not have to retrain their models. We develop a solution based on learning backward compatible embeddings, which allows the embedding model version to be updated frequently, while also allowing the latest version of the embedding to be quickly transformed into any backward compatible historical version of it, so that consumer teams do not have to retrain their models. Our key idea is that whenever a new embedding model is trained, we learn it together with a light-weight backward compatibility transformation that aligns the new embedding to the previous version of it. Our learned backward transformations can then be composed to produce any historical version of embedding. Under our framework, we explore six methods and systematically evaluate them on a real-world recommender system application. We show that the best method, which we call BC-Aligner, maintains backward compatibility with existing unintended tasks even after multiple model version updates. Simultaneously, BC-Aligner achieves the intended task performance similar to the embedding model that is solely optimized for the intended task.  more » « less
Award ID(s):
1835598
PAR ID:
10396203
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
Page Range / eLocation ID:
3018 to 3028
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Machine learning models are updated as new data is acquired or new architectures are developed. These updates usually increase model performance, but may introduce backward compatibility errors, where individual users or groups of users see their performance on the updated model adversely affected. This problem can also be present when training datasets do not accurately reflect overall population demographics, with some groups having overall lower participation in the data collection process, posing a significant fairness concern. We analyze how ideas from distributional robustness and minimax fairness can aid backward compatibility in this scenario, and propose two methods to directly address this issue. Our theoretical analysis is backed by experimental results on CIFAR-10, CelebA, and Waterbirds, three standard image classification datasets. 
    more » « less
  2. Transformer-based language models such as BERT and its variants have found widespread use in natural language processing (NLP). A common way of using these models is to fine-tune them to improve their performance on a specific task. However, it is currently unclear how the fine-tuning process affects the underlying structure of the word embeddings from these models. We present TopoBERT, a visual analytics system for interactively exploring the fine-tuning process of various transformer-based models – across multiple fine-tuning batch updates, subsequent layers of the model, and different NLP tasks – from a topological perspective. The system uses the mapper algorithm from topological data analysis (TDA) to generate a graph that approximates the shape of a model’s embedding space for an input dataset. TopoBERT enables its users (e.g. experts in NLP and linguistics) to (1) interactively explore the fine-tuning process across different model-task pairs, (2) visualize the shape of embedding spaces at multiple scales and layers, and (3) connect linguistic and contextual information about the input dataset with the topology of the embedding space. Using TopoBERT, we provide various use cases to exemplify its applications in exploring fine-tuned word embeddings. We further demonstrate the utility of TopoBERT, which enables users to generate insights about the fine-tuning process and provides support for empirical validation of these insights. 
    more » « less
  3. AutoML has demonstrated remarkable success in finding an effective neural architecture for a given machine learning task defined by a specific dataset and an evaluation metric. However, most present AutoML techniques consider each task independently from scratch, which requires exploring many architectures, leading to high computational costs. We proposed AutoTransfer, an AutoML solution that improves search efficiency by transferring the prior architectural design knowledge to the novel task of interest. Our key innovation includes a task-model bank that captures the model performance over a diverse set of GNN architectures and tasks, and a computationally efficient task embedding that can accurately measure the similarity among different tasks. Based on the task-model bank and the task embeddings, our method estimates the design priors of desirable models of the novel task, by aggregating a similarity-weighted sum of the top-K design distributions on tasks that are similar to the task of interest. The computed design priors can be used with any AutoML search algorithm. We evaluated AutoTransfer on six datasets in the graph machine learning domain. Experiments demonstrate that (i) our proposed task embedding can be computed efficiently, and that tasks with similar embeddings have similar best-performing architectures; (ii) AutoTransfer significantly improves search efficiency with the transferred design priors, reducing the number of explored architectures by an order of magnitude. Finally, we released GNN-BANK-101, a large-scale dataset of detailed GNN training information of 120,000 task-model combinations to facilitate and inspire future research. 
    more » « less
  4. By learning a sequence of tasks continually, an agent in continual learning (CL) can improve the learning performance of both a new task and `old' tasks by leveraging the forward knowledge transfer and the backward knowledge transfer, respectively. However, most existing CL methods focus on addressing catastrophic forgetting in neural networks by minimizing the modification of the learnt model for old tasks. This inevitably limits the backward knowledge transfer from the new task to the old tasks, because judicious model updates could possibly improve the learning performance of the old tasks as well. To tackle this problem, we first theoretically analyze the conditions under which updating the learnt model of old tasks could be beneficial for CL and also lead to backward knowledge transfer, based on the gradient projection onto the input subspaces of old tasks. Building on the theoretical analysis, we next develop a ContinUal learning method with Backward knowlEdge tRansfer (CUBER), for a fixed capacity neural network without data replay. In particular, CUBER first characterizes the task correlation to identify the positively correlated old tasks in a layer-wise manner, and then selectively modifies the learnt model of the old tasks when learning the new task. Experimental studies show that CUBER can even achieve positive backward knowledge transfer on several existing CL benchmarks for the first time without data replay, where the related baselines still suffer from catastrophic forgetting (negative backward knowledge transfer). The superior performance of CUBER on the backward knowledge transfer also leads to higher accuracy accordingly. 
    more » « less
  5. Many real-world tasks solved by heterogeneous network embedding methods can be cast as modeling the likelihood of a pairwise relationship between two nodes. For example, the goal of author identification task is to model the likelihood of a paper being written by an author (paper–author pairwise relationship). Existing taskguided embedding methods are node-centric in that they simply measure the similarity between the node embeddings to compute the likelihood of a pairwise relationship between two nodes. However, we claim that for task-guided embeddings, it is crucial to focus on directly modeling the pairwise relationship. In this paper, we propose a novel task-guided pair embedding framework in heterogeneous network, called TaPEm, that directly models the relationship between a pair of nodes that are related to a specific task (e.g., paper-author relationship in author identification). To this end, we 1) propose to learn a pair embedding under the guidance of its associated context path, i.e., a sequence of nodes between the pair, and 2) devise the pair validity classifier to distinguish whether the pair is valid with respect to the specific task at hand. By introducing pair embeddings that capture the semantics behind the pairwise relationships, we are able to learn the fine-grained pairwise relationship between two nodes, which is paramount for task-guided embedding methods. Extensive experiments on author identification task demonstrate that TaPEm outperforms the state-of-the-art methods, especially for authors with few publication records. 
    more » « less