skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mobility of mPing and its associated elements is regulated by both internal and terminal sequences
Abstract BackgroundDNA transposable elements are mobilized by a “cut and paste” mechanism catalyzed by the binding of one or more transposase proteins to terminal inverted repeats (TIRs) to form a transpositional complex. Study of the rice genome indicates that themPingelement has experienced a recent burst in transposition compared to the closely relatedPingandPongelements. A previously developed yeast transposition assay allowed us to probe the role of both internal and terminal sequences in the mobilization of these elements. ResultsWe observed thatmPingand a syntheticmPongelement have significantly higher transposition efficiency than the related autonomousPingandPongelements. Systematic mutation of the internal sequences of bothmPingandmPongidentified multiple regions that promote or inhibit transposition. Simultaneous alteration of single bases on bothmPingTIRs resulted in a significant reduction in transposition frequency, indicating that each base plays a role in efficient transposase binding. Testing chimericmPingandmPongelements verified the important role of both the TIRs and internal regulatory regions.Previous experiments showed that the G at position 16, adjacent to the 5′ TIR, allows mPingto have higher mobility. Alteration of the 16th and 17th base frommPing’s3′ end or replacement of the 3′ end withPong3′ sequences significantly increased transposition frequency. ConclusionsAs the transposase proteins were consistent throughout this study, we conclude that the observed transposition differences are due to the element sequences. The presence of sub-optimal internal regions and TIR bases supports a model in which transposable elements self-limit their activity to prevent host damage and detection by host regulatory mechanisms. Knowing the role of the TIRs, adjacent sub-TIRs, and internal regulatory sequences allows for the creation of hyperactive elements.  more » « less
Award ID(s):
1651666
PAR ID:
10396565
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Mobile DNA
Volume:
14
Issue:
1
ISSN:
1759-8753
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nearly all eukaryotes carry DNA transposons of the Robertson’s Mutator ( Mu ) superfamily, a widespread source of genome instability and genetic variation. Despite their pervasive impact on host genomes, much remains unknown about the evolution of these transposons. Transposase recognition of terminal inverted repeats (TIRs) is thought to drive and constrain coevolution of MuDR transposase genes and TIRs. To address the extent of this relationship and its impact, we compared separate phylogenies of TIRs and MuDR gene sequences from Mu elements in the maize genome. Five major clades were identified. As expected, most Mu elements were bound by highly similar TIRs from the same clade (homomorphic type). However, a subset of elements contained dissimilar TIRs derived from divergent clades. These “heteromorphs” typically occurred in multiple copies indicating active transposition in the genome. In addition, analysis of internal sequences showed that exchanges between elements having divergent TIRs produced new mudra and mudrb gene combinations. In several instances, TIR homomorphs had been regenerated within a heteromorph clade with retention of distinctive internal MuDR sequence combinations. Results reveal that recombination between divergent clades facilitates independent evolution of transposase ( mudra ), transposase-binding targets (TIRs), and capacity for insertion ( mudrb ) of active Mu elements. This mechanism would be enhanced by the preference of Mu insertions for recombination-rich regions near the 5′ ends of genes. We suggest that cycles of recombination give rise to alternating homo- and heteromorph forms that enhance the diversity on which selection for Mu fitness can operate. 
    more » « less
  2. Genomes of all characterized higher eukaryotes harbor examples of transposable element (TE) bursts—the rapid amplification of TE copies throughout a genome. Despite their prevalence, understanding how bursts diversify genomes requires the characterization of actively transposing TEs before insertion sites and structural rearrangements have been obscured by selection acting over evolutionary time. In this study, rice recombinant inbred lines (RILs), generated by crossing a bursting accession and the reference Nipponbare accession, were exploited to characterize the spread of the very active Ping / mPing family through a small population and the resulting impact on genome diversity. Comparative sequence analysis of 272 individuals led to the identification of over 14,000 new insertions of the mPing miniature inverted-repeat transposable element (MITE), with no evidence for silencing of the transposase-encoding Ping element. In addition to new insertions, Ping -encoded transposase was found to preferentially catalyze the excision of mPing loci tightly linked to a second mPing insertion. Similarly, structural variations, including deletion of rice exons or regulatory regions, were enriched for those with break points at one or both ends of linked mPing elements. Taken together, these results indicate that structural variations are generated during a TE burst as transposase catalyzes both the high copy numbers needed to distribute linked elements throughout the genome and the DNA cuts at the TE ends known to dramatically increase the frequency of recombination. 
    more » « less
  3. Class II DNA Transposable Elements (TEs) are moved from one location to another in the genome by the action of transposase proteins that bind to repeat sequences at the ends of the elements. Although the location TE insertion is mostly random, the addition of DNA binding domains to the transposase proteins has allowed for targeted insertion of some elements. In this study, the Gal4 binding domain was added to the transposase proteins, ORF1 and TPase, which mobilize the mPing element from rice. The Gal4:TPase construct was capable of increasing the number of mPing insertions into the Gal2 and Gal4 promoter sequences in yeast. While this confirms that mPing insertion preference can be manipulated, the target specificity is relatively low. Thus, the CRISPR/Cas9 system was tested for its ability to generate targeted insertion of mPing. A dCas9:TPase fusion protein had a low transposition rate suggesting that the addition of this large protein disrupts TPase function. Unfortunately, the use of a MS2 binding domain to localize the TPase to the MS2 hairpin containing gRNA failed to produce targeted insertion. Thus, our results suggest that the addition of small DNA binding domain to the N-terminal of TPase is the best strategy for targeted insertion of mPing. 
    more » « less
  4. Introduction: Class II DNA transposable elements account for significant portions of eukaryotic genomes and contribute to genome evolution through their mobilization. To escape inactivating mutations and persist in the host genome over evolutionary time, these elements must be mobilized enough to result in additional copies. These elements utilize a “cut and paste” transposition mechanism that does not intrinsically include replication. However, elements such as the rice derived mPing element have been observed to increase in copy number over time. Methods: We used yeast transposition assays to test several parameters that could affect the excision and insertion of mPing and its related elements. This included development of novel strategies for measuring element insertion and sequencing insertion sites. Results: Increased transposase protein expression increased the mobilization frequency of a small (430 bp) element, while overexpression inhibition was observed for a larger (7,126 bp) element. Smaller element size increased both the frequency of excision and insertion of these elements. The effect of yeast ploidy on element excision, insertion, and copy number provided evidence that homology dependent repair allows for replicative transposition. These elements were found to preferentially insert into yeast rDNA repeat sequences. Discussion: Identifying the parameters that influence transposition of these elements will facilitate their use for gene discovery and genome editing. These insights in to the behavior of these elements also provide important clues into how class II transposable elements have shaped eukaryotic genomes. 
    more » « less
  5. Abstract Modern plant breeding increasingly relies on genomic information to guide crop improvement. Although some genes are characterized, additional tools are needed to effectively identify and characterize genes associated with crop traits. To address this need, themPingelement from rice was modified to serve as an activation tag to induce expression of nearby genes. Embedding promoter sequences inmPingresulted in a decrease in overall transposition rate; however, this effect was negated by using a hyperactive version ofmPingcalledmmPing20. Transgenic soybean events carryingmPing‐based activation tags and the appropriate transposase expression cassettes showed evidence of transposition. Expression analysis of a line that contained a heritable insertion of themmPing20Factivation tag indicated that the activation tag induced overexpression of the nearby soybean genes. This represents a significant advance in gene discovery technology as activation tags have the potential to induce more phenotypes than the originalmPingelement, improving the overall effectiveness of the mutagenesis system. 
    more » « less