3D architectures have been long harnessed to create lightweight yet strong cellular materials; however, the study regarding how 3D architectures facilitate the design of soft materials is at the incipient stage. Here, we demonstrate that 3D architectures can greatly facilitate the design of an intrinsically stretchable lattice conductor. We show that 3D architectures can be harnessed to enhance the overall stretchability of the soft conductors, reduce the effective density, enable resistive sensing of the large deformation of curved solids, and improve monitoring of a wastewater stream. Theoretical models are developed to understand the mechanical and conductive behaviors of the lattice conductor. We expect this type of lattice conductors can potentially inspire various designs of 3D-architected electronics for diverse applications from healthcare devices to soft robotics.
more »
« less
Modeling Current Distribution Within Conductors and Between Parallel Conductors in High-Frequency Magnetics
- Award ID(s):
- 2145274
- PAR ID:
- 10396610
- Date Published:
- Journal Name:
- IEEE Open Journal of Power Electronics
- Volume:
- 3
- ISSN:
- 2644-1314
- Page Range / eLocation ID:
- 635 to 650
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Stretchable electronics have potential in wide‐reaching applications including wearables, personal health monitoring, and soft robotics. Many recent advances in stretchable electronics leverage liquid metals, particularly eutectic gallium‐indium (EGaIn). A variety of EGaIn electromechanical behaviors have been reported, ranging from bulk conductor responses to effectively strain‐insensitive responses. However, numerous measurement techniques have been used throughout the literature, making it difficult to directly compare the various proposed formulations. Here, the electromechanical responses of EGaIn found in the literature is reviewed and pure EGaIn is investigated using three electrical resistance measurement techniques: four point probe, two point probe, and Wheatstone bridge. The results indicate substantial differences in measured electromechanical behavior between the three methods, which can largely be accounted for by correcting for a fixed offset corresponding to the resistances of various parts of the measurement circuits. Yet, even accounting for several of these sources of experimental error, the average relative change in resistance of EGaIn is found to be lower than that predicted by the commonly used bulk conductor assumption, referred to as Pouillet's law. Building upon recent theories proposed in the literature, possible explanations for the discrepancies are discussed. Finally, suggestions are provided on experimental design to enable reproducible and interpretable research.more » « less
-
Abstract The quest to improve transparent conductors balances two key goals: increasing electrical conductivity and increasing optical transparency. To improve both simultaneously is hindered by the physical limitation that good metals with high electrical conductivity have large carrier densities that push the plasma edge into the ultra-violet range. Technological solutions reflect this trade-off, achieving the desired transparencies only by reducing the conductor thickness or carrier density at the expense of a lower conductance. Here we demonstrate that highly anisotropic crystalline conductors offer an alternative solution, avoiding this compromise by separating the directions of conduction and transmission. We demonstrate that slabs of the layered oxides Sr2RuO4and Tl2Ba2CuO6+δare optically transparent even at macroscopic thicknesses >2 μm for c-axis polarized light. Underlying this observation is the fabrication of out-of-plane slabs by focused ion beam milling. This work provides a glimpse into future technologies, such as highly polarized and addressable optical screens.more » « less
An official website of the United States government

