skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Exceptional Repetitive-Short-Circuit Robustness of Vertical GaN Fin-JFET at High Voltage
The limited short circuit (SC) capability of GaN high-electron-mobility transistors (HEMTs) has become a critical concern for their adoption in many power applications. Recently, breakthrough SC robustness was demonstrated in a 650-V rated vertical GaN Fin-JFET with a short circuit withstanding time of over 30 µs at 400 V bus voltage (V BUS ), showing great potential for automotive powertrain and grid applications. This work presents the first study on the repetitive SC robustness of this GaN Fin-JFET at a V BUS of 400 V and 600 V. The GaN Fin-JFET survived 30,000 cycles of 400 V, 10 µs SC stresses without any degradation in device characteristics. At a 600 V V BUS , it survived over 8,000 cycles of 10 µs SC stresses before an open-circuit failure. This open-circuit failure signature allows the GaN Fin-JFET to retain its avalanche breakdown voltage and is highly desirable for system safety. Besides, an increase in gate leakage was observed during the 600 V repetitive test, which can be used as a precursor to predict device failure. As far as we know, this is the first report of an exceptional repetitive SC robustness in a power transistor at a V BUS close to its rated voltage.  more » « less
Award ID(s):
2045001
NSF-PAR ID:
10396733
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Exceptional Repetitive-Short-Circuit Robustness of Vertical GaN Fin-JFET at High Voltage
Page Range / eLocation ID:
205 to 208
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. GaN high-electron-mobility transistors (HEMTs) are known to have no avalanche capability and insufficient short-circuit robustness. Recently, breakthrough avalanche and short-circuit capabilities have been experimentally demonstrated in a vertical GaN fin-channel junction-gate field-effect transistor (Fin-JFET), which shows a good promise for using GaN devices in automotive powertrains and electric grids. In particular, GaN Fin-JFETs demonstrated good short-circuit capability at avalanche breakdown voltage (BV AVA ), with a failure-to-open-circuit (FTO) signature. This work presents a comprehensive device physics-based study of the GaN Fin-JFET under short-circuit conditions, particularly at a bus voltage close to BV AVA . Mixed-mode electrothermal TCAD simulations were performed to understand the carrier dynamics, electric field distributions, and temperature profiles in the Fin-JFET under short-circuit and avalanche conditions. The results provide important physical references to understand the unique robustness of the vertical GaN Fin-JFET under the concurrence of short-circuit and avalanche as well as its desirable FTO signature. 
    more » « less
  2. Power devices are highly desirable to possess excellent avalanche and short-circuit (or surge-current) robustness for numerous power electronics applications like automotive powertrains, electric grids, motor drives, among many others. Current commercial GaN power device, the lateral GaN high-electron-mobility transistor (HEMT), is known to have no avalanche capability and very limited short-circuit robustness. These limitations have become a roadblock for penetration of GaN devices in many industrial power applications. Recently, through collaborations with NexGen Power Systems (NexGen), Inc., we have demonstrated breakthrough avalanche, surge-current and short-circuit robustness in NexGen’s vertical GaN p-n diodes and fin-shape junction-gate field-effect-transistors (Fin-JFETs). These large-area GaN diodes and Fin-JFETs were manufactured in NexGen’s 100 mm GaN-on-GaN fab. The demonstrated avalanche, surge-current and short-circuit capabilities are comparable or even superior to Si and SiC power devices. Additionally, vertical GaN Fin-JFETs were found to fail to open-circuit under avalanche and short-circuit conditions, which is highly desirable for the system safety. This talk reviews the key robustness results of vertical GaN power devices and unveils the enabling device physics. Fundamentally, these results signify that, in contrast to some popular belief, GaN devices with appropriate designs can achieve excellent robustness and thereby encounter no barriers for applications in electric vehicles, grids, renewable processing, and industrial motor drives. 
    more » « less
  3. Abstract

    Perovskite‐organic tandem solar cells are attracting more attention due to their potential for highly efficient and flexible photovoltaic device. In this work, efficient perovskite‐organic monolithic tandem solar cells integrating the wide bandgap perovskite (1.74 eV) and low bandgap organic active PBDB‐T:SN6IC‐4F (1.30 eV) layer, which serve as the top and bottom subcell, respectively, are developed. The resulting perovskite‐organic tandem solar cells with passivated wide‐bandgap perovskite show a remarkable power conversion efficiency (PCE) of 15.13%, with an open‐circuit voltage (Voc) of 1.85 V, a short‐circuit photocurrent (Jsc) of 11.52 mA cm−2, and a fill factor (FF) of 70.98%. Thanks to the advantages of low temperature fabrication processes and the flexibility properties of the device, a flexible tandem solar cell which obtain a PCE of 13.61%, withVocof 1.80 V,Jscof 11.07 mA cm−2, and FF of 68.31% is fabricated. Moreover, to demonstrate the achieved highVocin the tandem solar cells for potential applications, a photovoltaic (PV)‐driven electrolysis system combing the tandem solar cell and water splitting electrocatalysis is assembled. The integrated device demonstrates a solar‐to‐hydrogen efficiency of 12.30% and 11.21% for rigid, and flexible perovskite‐organic tandem solar cell based PV‐driven electrolysis systems, respectively.

     
    more » « less
  4. In this paper, the short circuit ruggedness of Gallium Oxide (Ga 2 O 3 ) vertical FinFET is studied using Technology Computer-Aided-Design (TCAD) simulations. Ga 2 O 3 is an emerging ultra-wide bandgap material and Ga 2 O 3 vertical FinFET can achieve the normally-off operation for high voltage applications. Ga 2 O 3 has a relatively low thermal conductivity and, thus, it is critical to explore the design space of Ga 2 O 3 vertical FinFETs to achieve an acceptable short-circuit capability for power applications. In this study, appropriate TCAD models and parameters calibrated to experimental data are used. For the first time, the breakdown voltage simulation accuracy of Ga 2 O 3 vertical FinFETs is studied systematically. It is found that a background carrier generation rate between 10 5 cm −3 s −1 and 10 12 cm −3 s −1 is required in simulation to obtain correct results. The calibrated and robust setup is then used to study the short circuit withstand time (SCWT) of an 800 V-rated Ga 2 O 3 vertical FinFET with different inter-fin architectures. It is found that, due to the high thermal resistance in Ga 2 O 3 , to achieve an SCWT >1 μ s, low gate overdrive is needed which increases R on,sp by 66% and that Ga 2 O 3 might melt before the occurrence of thermal runaway. These results provide important guidance for developing rugged Ga 2 O 3 power transistors. 
    more » « less
  5.  
    more » « less