- Award ID(s):
- 2045001
- NSF-PAR ID:
- 10396733
- Date Published:
- Journal Name:
- Exceptional Repetitive-Short-Circuit Robustness of Vertical GaN Fin-JFET at High Voltage
- Page Range / eLocation ID:
- 205 to 208
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
GaN high-electron-mobility transistors (HEMTs) are known to have no avalanche capability and insufficient short-circuit robustness. Recently, breakthrough avalanche and short-circuit capabilities have been experimentally demonstrated in a vertical GaN fin-channel junction-gate field-effect transistor (Fin-JFET), which shows a good promise for using GaN devices in automotive powertrains and electric grids. In particular, GaN Fin-JFETs demonstrated good short-circuit capability at avalanche breakdown voltage (BV AVA ), with a failure-to-open-circuit (FTO) signature. This work presents a comprehensive device physics-based study of the GaN Fin-JFET under short-circuit conditions, particularly at a bus voltage close to BV AVA . Mixed-mode electrothermal TCAD simulations were performed to understand the carrier dynamics, electric field distributions, and temperature profiles in the Fin-JFET under short-circuit and avalanche conditions. The results provide important physical references to understand the unique robustness of the vertical GaN Fin-JFET under the concurrence of short-circuit and avalanche as well as its desirable FTO signature.more » « less
-
Power devices are highly desirable to possess excellent avalanche and short-circuit (or surge-current) robustness for numerous power electronics applications like automotive powertrains, electric grids, motor drives, among many others. Current commercial GaN power device, the lateral GaN high-electron-mobility transistor (HEMT), is known to have no avalanche capability and very limited short-circuit robustness. These limitations have become a roadblock for penetration of GaN devices in many industrial power applications. Recently, through collaborations with NexGen Power Systems (NexGen), Inc., we have demonstrated breakthrough avalanche, surge-current and short-circuit robustness in NexGen’s vertical GaN p-n diodes and fin-shape junction-gate field-effect-transistors (Fin-JFETs). These large-area GaN diodes and Fin-JFETs were manufactured in NexGen’s 100 mm GaN-on-GaN fab. The demonstrated avalanche, surge-current and short-circuit capabilities are comparable or even superior to Si and SiC power devices. Additionally, vertical GaN Fin-JFETs were found to fail to open-circuit under avalanche and short-circuit conditions, which is highly desirable for the system safety. This talk reviews the key robustness results of vertical GaN power devices and unveils the enabling device physics. Fundamentally, these results signify that, in contrast to some popular belief, GaN devices with appropriate designs can achieve excellent robustness and thereby encounter no barriers for applications in electric vehicles, grids, renewable processing, and industrial motor drives.more » « less
-
Abstract Perovskite‐organic tandem solar cells are attracting more attention due to their potential for highly efficient and flexible photovoltaic device. In this work, efficient perovskite‐organic monolithic tandem solar cells integrating the wide bandgap perovskite (1.74 eV) and low bandgap organic active PBDB‐T:SN6IC‐4F (1.30 eV) layer, which serve as the top and bottom subcell, respectively, are developed. The resulting perovskite‐organic tandem solar cells with passivated wide‐bandgap perovskite show a remarkable power conversion efficiency (PCE) of 15.13%, with an open‐circuit voltage (
V oc) of 1.85 V, a short‐circuit photocurrent (J sc) of 11.52 mA cm−2, and a fill factor (FF) of 70.98%. Thanks to the advantages of low temperature fabrication processes and the flexibility properties of the device, a flexible tandem solar cell which obtain a PCE of 13.61%, withV ocof 1.80 V,J scof 11.07 mA cm−2, and FF of 68.31% is fabricated. Moreover, to demonstrate the achieved highV ocin the tandem solar cells for potential applications, a photovoltaic (PV)‐driven electrolysis system combing the tandem solar cell and water splitting electrocatalysis is assembled. The integrated device demonstrates a solar‐to‐hydrogen efficiency of 12.30% and 11.21% for rigid, and flexible perovskite‐organic tandem solar cell based PV‐driven electrolysis systems, respectively. -
In this paper, the short circuit ruggedness of Gallium Oxide (Ga 2 O 3 ) vertical FinFET is studied using Technology Computer-Aided-Design (TCAD) simulations. Ga 2 O 3 is an emerging ultra-wide bandgap material and Ga 2 O 3 vertical FinFET can achieve the normally-off operation for high voltage applications. Ga 2 O 3 has a relatively low thermal conductivity and, thus, it is critical to explore the design space of Ga 2 O 3 vertical FinFETs to achieve an acceptable short-circuit capability for power applications. In this study, appropriate TCAD models and parameters calibrated to experimental data are used. For the first time, the breakdown voltage simulation accuracy of Ga 2 O 3 vertical FinFETs is studied systematically. It is found that a background carrier generation rate between 10 5 cm −3 s −1 and 10 12 cm −3 s −1 is required in simulation to obtain correct results. The calibrated and robust setup is then used to study the short circuit withstand time (SCWT) of an 800 V-rated Ga 2 O 3 vertical FinFET with different inter-fin architectures. It is found that, due to the high thermal resistance in Ga 2 O 3 , to achieve an SCWT >1 μ s, low gate overdrive is needed which increases R on,sp by 66% and that Ga 2 O 3 might melt before the occurrence of thermal runaway. These results provide important guidance for developing rugged Ga 2 O 3 power transistors.more » « less
-
Organic solar cells that are transparent to visible light are highly desirable for applications such as window treatments or solar greenhouse panels. A key challenge is to simultaneously transmit most photons between 400 and 700 nm while retaining a high short‐circuit current and power conversion efficiency (PCE). Here, organic bulk heterojunction (BHJ) solar cells consisting of a donor polymer (PM2) is reported and the non‐fullerene acceptor ITIC‐Th achieves a PCE of 9.3%, and the BHJ thin films exhibit an average visible transmittance over 40%. This value is achieved primarily due to a very high open‐circuit voltage (
V OC) of 0.93 V, which represents a voltage loss of only 0.50 V relative to the material optical bandgap,E opt. In PM2:PC61BM devices, this voltage loss increases to 0.62 V (V OC = 0.82 V). It is found that this difference inV OCis due to higher nonradiative recombination in the fullerene‐based solar cell, suggesting that non‐fullerene acceptors may lead to better performance in semi‐transparent devices. The optoelectronic properties associated with PM2:ITIC‐Th and PM2:PC61BM blends are further corroborated by different morphological features and local structures at the donor‐acceptor interfaces characterized by atomic force microscopy, X‐ray scattering, and solid‐state NMR spectroscopy techniques.