skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The resonances in the $$^{22}$$Ne+$$\alpha $$ fusion reactions
Abstract The interplay and correlation between the $$^{22}$$ 22 Ne $$(\alpha ,\gamma )^{26}$$ ( α , γ ) 26 Mg and the competing $$^{22}$$ 22 Ne $$(\alpha ,n)^{25}$$ ( α , n ) 25 Mg reaction plays an important role for the interpretation of the $$^{22}$$ 22 Ne $$(\alpha ,n)^{25}$$ ( α , n ) 25 Mg reaction as a neutron source in the s - and n -processes. This paper provides a summary and new data on the $$\alpha $$ α -cluster and single-particle structure of the compound nucleus $$^{26}$$ 26 Mg and the impact on the reaction rate of these two competing processes in stellar helium burning environments.  more » « less
Award ID(s):
2011890
PAR ID:
10396845
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The European Physical Journal A
Volume:
59
Issue:
1
ISSN:
1434-601X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract One of the most important stellar neutron sources is the22Ne($$\alpha ,n$$ α , n )25Mg reaction, which gets activated both during the helium intershell burning in asymptotic giant branch stars and in core helium and shell carbon burning in massive stars. The22Ne($$\alpha ,n$$ α , n )25Mg reaction serves as the main neutron producer for the weaks-process and provides a short but strong neutron exposure during the helium flash phase of the mains-process, significantly affecting the abundances at thes-process branch points. The cross section needs to be known at very low energies, as close as possible to the neutron threshold at$$E_\alpha =$$ E α = 562 keV (Q= −478 keV), but both direct and indirect measurements have turned out to be very challenging, leading to significant uncertainties. Here we discuss the current status of the reaction, including recent and upcoming measurements, and provide a discussion on the astrophysical implications as well as an outlook into the near future. 
    more » « less
  2. ABSTRACT Strong metallicity-dependent winds dominate the evolution of core He-burning, classical Wolf–Rayet (cWR) stars, which eject both H and He-fusion products such as $$^{14}$$N, $$^{12}$$C, $$^{16}$$O, $$^{19}$$F, $$^{22}$$Ne, and $$^{23}$$Na during their evolution. The chemical enrichment from cWRs can be significant. cWR stars are also key sources for neutron production relevant for the weak s-process. We calculate stellar models of cWRs at solar metallicity for a range of initial Helium star masses (12–50 $$\rm M_{\odot }$$), adopting recent hydrodynamical wind rates. Stellar wind yields are provided for the entire post-main sequence evolution until core O-exhaustion. While literature has previously considered cWRs as a viable source of the radioisotope $$^{26}$$Al, we confirm that negligible $$^{26}$$Al is ejected by cWRs since it has decayed to $$^{26}$$Mg or proton-captured to $$^{27}$$Al. However, in Paper I, we showed that very massive stars eject substantial quantities of $$^{26}$$Al, among other elements including N, Ne, and Na, already from the zero-age-main-sequence. Here, we examine the production of $$^{19}$$F and find that even with lower mass-loss rates than previous studies, our cWR models still eject substantial amounts of $$^{19}$$F. We provide central neutron densities (N$$_{n}$$) of a 30 $$\rm M_{\odot }$$ cWR compared with a 32 $$\rm M_{\odot }$$ post-VMS WR and confirm that during core He-burning, cWRs produce a significant number of neutrons for the weak s-process via the $$^{22}$$Ne($$\alpha$$,n)$$^{25}$$Mg reaction. Finally, we compare our cWR models with observed [Ne/He], [C/He], and [O/He] ratios of Galactic WC and WO stars. 
    more » « less
  3. Abstract We explore neutrino emission from nonrotating, single-star models across six initial metallicities and 70 initial masses from the zero-age main sequence to the final fate. Overall, across the mass spectrum, we find metal-poor stellar models tend to have denser, hotter, and more massive cores with lower envelope opacities, larger surface luminosities, and larger effective temperatures than their metal-rich counterparts. Across the mass–metallicity plane we identify the sequence (initial CNO →14N →22Ne →25Mg →26Al →26Mg →30P →30Si) as making primary contributions to the neutrino luminosity at different phases of evolution. For the low-mass models we find neutrino emission from the nitrogen flash and thermal pulse phases of evolution depend strongly on the initial metallicity. For the high-mass models, neutrino emission at He-core ignition and He-shell burning depends strongly on the initial metallicity. Antineutrino emission during C, Ne, and O burning shows a strong metallicity dependence with22Ne(α,n)25Mg providing much of the neutron excess available for inverse-βdecays. We integrate the stellar tracks over an initial mass function and time to investigate the neutrino emission from a simple stellar population. We find average neutrino emission from simple stellar populations to be 0.5–1.2 MeV electron neutrinos. Lower metallicity stellar populations produce slightly larger neutrino luminosities and averageβdecay energies. This study can provide targets for neutrino detectors from individual stars and stellar populations. We provide convenient fitting formulae and open access to the photon and neutrino tracks for more sophisticated population synthesis models. 
    more » « less
  4. Liu, W.; Wang, Y.; Guo, B.; Tang, X.; Zeng, S. (Ed.)
    Sensitivity studies have shown that the 15 O(α, γ) 19 Ne reaction is the most important reaction rate uncertainty affecting the shape of light curves from Type I X-ray bursts. This reaction is dominated by the 4.03 MeV resonance in 19 Ne. Previous measurements by our group have shown that this state is populated in the decay sequence of 20 Mg. A single 20 Mg(βp α) 15 O event through the key 15 O(α, γ) 19 Ne resonance yields a characteristic signature: the emission of a proton and alpha particle. To achieve the granularity necessary for the identification of this signature, we have upgraded the Proton Detector of the Gaseous Detector with Germanium Tagging (GADGET) into a time projection chamber to form the GADGET II detection system. GADGET II has been fully constructed, and is entering the testing phase. 
    more » « less
  5. Abstract A clear definition of the contribution from the slow neutron-capture process (s process) to the solar abundances between Fe and the Sr-Zr region is a crucial challenge for nuclear astrophysics. Robust s-process predictions are necessary to disentangle the contribution from other stellar processes producing elements in the same mass region. Nuclear uncertainties are affecting s-process calculations, but most of the needed nuclear input are accessible to present nuclear experiments or they will be in the near future. Neutron-capture rates have a great impact on the s process in massive stars, which is a fundamental source for the solar abundances of the lighter s-process elements heavier than Fe (weak s-process component). In this work we present a new nuclear sensitivity study to explore the impact on the s process in massive stars of 86 neutron-capture rates, including all the reactions between C and Si and between Fe and Zr. We derive the impact of the rates at the end of the He-burning core and at the end of the C-burning shell, where the$$^{22}$$ 22 Ne($$\alpha $$ α ,n)$$^{25}$$ 25 Mg reaction is is the main neutron source. We confirm the relevance of the light isotopes capturing neutrons in competition with the Fe seeds as a crucial feature of the s process in massive stars. For heavy isotopes we study the propagation of the neutron-capture uncertainties, finding a clear difference of the impact of Fe and Co isotope rates with respect to the rates of heavier stable isotopes. The local uncertainty propagation due to the neutron-capture rates at the s-process branching points is also considered, discussing the example of$$^{85}$$ 85 Kr. The complete results of our study for all the 86 neutron-capture rates are available online. Finally, we present the impact on the weak s process of the neutron-capture rates included in the new ASTRAL library (v0.2). 
    more » « less