skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Light and hydrologic connectivity drive dissolved oxygen synchrony in stream networks
Abstract Stream dissolved oxygen (DO) dynamics are an outcome of metabolic activity and subsequently regulate ecosystem functions such as in‐stream solute and sediment reactions. The synchronization of DO signals in and across stream networks is both a cause and effect of the mode and timing of these functions, but there is limited empirical evidence for network patterns of DO synchrony. We used high frequency DO measurements at 42 sites spanning five catchments and stream orders to evaluate DO signal synchrony in response to variation in light (a driver of photosynthesis) and discharge (a control on DO signal spatial extent). We hypothesized that stream network DO synchrony arises when regional controls dominate: when light inputs are synchronous and when longitudinal hydrologic connectivity is high. By complement, we predicted that DO signal synchrony decreases as light becomes more asynchronous and stream flows decline or become discontinuous. Our results supported this hypothesis: greater DO signal synchrony arose with increasing light synchrony and flow connectivity. A model including these two controls explained 70% of variation in DO synchrony. We conclude that DO synchrony patterns within‐ and across‐networks support the current paradigm of discharge and light control on stream metabolic activity. Finally, we propose that DO synchrony patterns are likely a useful prerequisite for scaling subdaily metabolism estimates to network and regional scales.  more » « less
Award ID(s):
1930451 1846855 1916567
PAR ID:
10397052
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
68
Issue:
2
ISSN:
0024-3590
Page Range / eLocation ID:
p. 322-335
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding how subsurface water storage—created and structured by the geology and geomorphology of the critical zone—governs hydrologic connectivity between landscapes and streams is essential for explaining spatial and temporal variation in stream water chemistry. Most headwater studies have focused on high‐resolution stream water chemistry at the catchment outlet, rarely examining the spatial variability among tributaries and the main channel, or how these patterns relate to the underlying geology and geomorphology. Linking upstream spatial and temporal variability with chemical dynamics at the outlet over time is even less common. We conducted weekly synoptic sampling along Lookout Creek, located within the HJ Andrews Experimental Forest Long Term Ecological Research programme. Lookout Creek is in the volcanic terrain of the western Cascades, Oregon. The catchment spans multiple geologic units (e.g., lava flows) and geomorphic features (e.g., earthflows). We measured stream chemistry along the main stem and five tributaries to assess how varying degrees of hydrologic connectivity influence solute concentrations and transport across this geologic and geomorphologic template. To identify the timing and magnitude of hydrologic connectivity between tributaries, the main stem, and the catchment outlet, we analysed spatiotemporal patterns in stream chemistry using concentration‐discharge relationships, principal component analysis, and a metric of subcatchment synchrony. We found that in previously glaciated catchments with active earthflows, solute concentrations and base‐cation‐to‐silica ratios were higher, and more solutes had a chemostatic or mobilising behaviour, indicating high subsurface storage. This variability in subsurface storage, and its influence on hydrologic connectivity, ultimately determined the degree of chemical synchrony with the catchment outlet. Our findings suggest that, under future climate scenarios with shifts in precipitation phase and timing, headwater systems with substantial subsurface storage are likely to be more chemically resilient. 
    more » « less
  2. ABSTRACT Intermittent streams are characterized by significant periods of low to no flow, yet are also frequently subjected to flashy, high floods. Floods alter ecosystem function and result in variable successional patterns across the stream network. Yet, the timing of restored function after floods in intermittent stream networks is relatively unexplored. We measured recovery of stream ecosystem function using rates of gross primary production (GPP), ecosystem respiration (ER), net ecosystem production (NEP), and the primary production to respiration ratio (P/R) across eight locations in the Kings Creek drainage basin with differing preflood conditions (previously dry [intermittent] or flowing [perennial]) over a 30‐d period following a 2‐yr return interval flood. We found that all metabolic rates (GPP, ER, NEP, P/R) varied primarily by time (days since flood) and antecedent flow, but not spatial network position (i.e., drainage area). Intermittent sites exhibited high rates of ER (0.17–3.33 g dissolved oxygen [DO] m−2d−1) following rewetting compared to perennial sites (0.03–1.17 g DO m−2d−1), while GPP, NEP, and P/R were slower to recover and varied less between sites of differing preflood conditions. Metabolic rates were not strongly influenced by other environmental conditions. A large proportion of variation was explained by the random effect of location. Our results suggest that metabolism is temporally asynchronous and highly heterogenous across intermittent watersheds and that antecedent hydrology (drying prior to rewetting) stimulates heterotrophic activity, likely dependent on terrestrially derived organic matter and nutrient subsidies. 
    more » « less
  3. Abstract The temporal structures of gross primary production (GPP) and ecosystem respiration (ER) vary across time scales in response to complex interactions among dynamic drivers (e.g., flow, light, temperature, organic matter supply). To explore emergent patterns of river metabolic variation, we applied frequency‐domain analysis to multiyear records of metabolism across 87 US rivers. We observed a dominant annual periodicity in metabolic variation and universal fractal scaling (i.e., power spectral density inversely correlated with frequency) at subannual frequencies, suggesting these are foundational temporal structures of river metabolic regimes. Frequency‐domain patterns of river metabolism aligned best with drivers related to energy inputs: benthic light for GPP and GPP for ER. Simple river metabolism models captured frequency‐domain patterns when parameterized with appropriate energy inputs but neglecting temperature controls. These results imply that temporal variation of energy supply imprints directly on metabolic signals and that frequency‐domain patterns provide benchmark properties to predict river metabolic regimes. 
    more » « less
  4. Abstract Stream drying is increasing globally, with widespread impacts on stream ecosystems. Here, we investigated how the impacts of drying on stream ecosystem connectivity might depend on stream network size and the location of drying within the stream network. Using 11 stream networks from across the United States, we simulated drying scenarios in which we varied the location and spatial extent of drying. We found that the rate of connectivity loss varied with stream network size, such that larger stream networks lost connectivity more rapidly than smaller stream networks. We also found that the rate of connectivity loss varied with the location of drying. When drying occurred in the mainstem, even small amounts of drying resulted in rapid losses in ecosystem connectivity. When drying occurred in headwater reaches, small amounts of drying had little impact on connectivity. Beyond a certain threshold, however, connectivity declined rapidly with further increases in drying. Given the increasing stream drying worldwide, our findings underscore the need for managers to be particularly vigilant about fragmentation when managing at large spatial scales and when stream drying occurs in mainstem reaches. 
    more » « less
  5. Cortical neurons are characterized by their variable spiking patterns. Here, we examine the specific hypothesis that cortical synchrony drives spiking variability in vivo. Using dynamic clamps, we demonstrate that intrinsic neuronal properties do not contribute substantially to spiking variability, but rather spiking variability emerges from weakly synchronous network drive. With large-scale electrophysiology, we quantify the degree of synchrony and its timescale in cortical networks in vivo. The timescale of synchrony shifts in a range from 25 to 200 ms, depending on the presence of external sensory input. In particular, when the network moves from spontaneous to driven modes, the synchrony timescales shift from slow to fast, leading to a natural reduction in response variability across cortical areas. Finally, while an individual neuron exhibits reliable responses to physiological drive, different neurons respond in a distinct fashion according to their intrinsic properties, contributing to stable synchrony across the neural network. 
    more » « less