Stream drying is increasing globally, with widespread impacts on stream ecosystems. Here, we investigated how the impacts of drying on stream ecosystem connectivity might depend on stream network size and the location of drying within the stream network. Using 11 stream networks from across the United States, we simulated drying scenarios in which we varied the location and spatial extent of drying. We found that the rate of connectivity loss varied with stream network size, such that larger stream networks lost connectivity more rapidly than smaller stream networks. We also found that the rate of connectivity loss varied with the location of drying. When drying occurred in the mainstem, even small amounts of drying resulted in rapid losses in ecosystem connectivity. When drying occurred in headwater reaches, small amounts of drying had little impact on connectivity. Beyond a certain threshold, however, connectivity declined rapidly with further increases in drying. Given the increasing stream drying worldwide, our findings underscore the need for managers to be particularly vigilant about fragmentation when managing at large spatial scales and when stream drying occurs in mainstem reaches.
Stream dissolved oxygen (DO) dynamics are an outcome of metabolic activity and subsequently regulate ecosystem functions such as in‐stream solute and sediment reactions. The synchronization of DO signals in and across stream networks is both a cause and effect of the mode and timing of these functions, but there is limited empirical evidence for network patterns of DO synchrony. We used high frequency DO measurements at 42 sites spanning five catchments and stream orders to evaluate DO signal synchrony in response to variation in light (a driver of photosynthesis) and discharge (a control on DO signal spatial extent). We hypothesized that stream network DO synchrony arises when regional controls dominate: when light inputs are synchronous and when longitudinal hydrologic connectivity is high. By complement, we predicted that DO signal synchrony decreases as light becomes more asynchronous and stream flows decline or become discontinuous. Our results supported this hypothesis: greater DO signal synchrony arose with increasing light synchrony and flow connectivity. A model including these two controls explained 70% of variation in DO synchrony. We conclude that DO synchrony patterns within‐ and across‐networks support the current paradigm of discharge and light control on stream metabolic activity. Finally, we propose that DO synchrony patterns are likely a useful prerequisite for scaling subdaily metabolism estimates to network and regional scales.
more » « less- PAR ID:
- 10397052
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography
- Volume:
- 68
- Issue:
- 2
- ISSN:
- 0024-3590
- Page Range / eLocation ID:
- p. 322-335
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
ABSTRACT Intermittent streams are characterized by significant periods of low to no flow, yet are also frequently subjected to flashy, high floods. Floods alter ecosystem function and result in variable successional patterns across the stream network. Yet, the timing of restored function after floods in intermittent stream networks is relatively unexplored. We measured recovery of stream ecosystem function using rates of gross primary production (GPP), ecosystem respiration (ER), net ecosystem production (NEP), and the primary production to respiration ratio (P/R) across eight locations in the Kings Creek drainage basin with differing preflood conditions (previously dry [intermittent] or flowing [perennial]) over a 30‐d period following a 2‐yr return interval flood. We found that all metabolic rates (GPP, ER, NEP, P/R) varied primarily by time (days since flood) and antecedent flow, but not spatial network position (i.e., drainage area). Intermittent sites exhibited high rates of ER (0.17–3.33 g dissolved oxygen [DO] m−2d−1) following rewetting compared to perennial sites (0.03–1.17 g DO m−2d−1), while GPP, NEP, and P/R were slower to recover and varied less between sites of differing preflood conditions. Metabolic rates were not strongly influenced by other environmental conditions. A large proportion of variation was explained by the random effect of location. Our results suggest that metabolism is temporally asynchronous and highly heterogenous across intermittent watersheds and that antecedent hydrology (drying prior to rewetting) stimulates heterotrophic activity, likely dependent on terrestrially derived organic matter and nutrient subsidies.
-
Brain aging is associated with hypometabolism and global changes in functional connectivity. Using functional MRI (fMRI), we show that network synchrony, a collective property of brain activity, decreases with age. Applying quantitative methods from statistical physics, we provide a generative (Ising) model for these changes as a function of the average communication strength between brain regions. We find that older brains are closer to a critical point of this communication strength, in which even small changes in metabolism lead to abrupt changes in network synchrony. Finally, by experimentally modulating metabolic activity in younger adults, we show how metabolism alone—independent of other changes associated with aging—can provide a plausible candidate mechanism for marked reorganization of brain network topology.more » « less
-
The vertebrate basal forebrain and midbrain contain a set of interconnected nuclei that control social behavior. Conserved anatomical structures and functions of these nuclei have now been documented among fish, amphibians, reptiles, birds and mammals, and these brain regions have come to be known as the vertebrate social behavior network (SBN). While it is known that nuclei (nodes) of the SBN are rich in steroid and neuropeptide activity linked to behavior, simultaneous variation in the expression of neuroendocrine genes among several SBN nuclei has not yet been described in detail. In this study, we use RNA‐seq to profile gene expression across seven brain regions representing five nodes of the vertebrate SBN in a passerine bird, the wire‐tailed manakin
. Using weighted gene co‐expression network analysis, we reconstructed sets of coregulated genes, showing striking patterns of variation in neuroendocrine gene expression across the SBN. We describe regional variation in gene networks comprising a broad set of hormone receptors, neuropeptides, steroidogenic enzymes, catecholamines and other neuroendocrine signaling molecules. Our findings show heterogeneous patterns of brain gene expression across nodes of the avian SBN and provide a foundation for future analyses of how the regulation of gene networks may mediate social behavior. These results highlight the importance of region‐specific sampling in studies of the mechanisms of behavior.Pipra filicauda -
Abstract Maintaining regional‐scale freshwater connectivity is challenging due to the dendritic, easily fragmented structure of freshwater networks, but is essential for promoting ecological resilience under climate change. Although the importance of stream network connectivity has been recognized, lake‐stream network connectivity has largely been ignored. Furthermore, protected areas are generally not designed to maintain or encompass entire freshwater networks. We applied a coarse‐filter approach to identify potential freshwater corridors for diverse taxa by calculating connectivity scores for 385 lake‐stream networks across the conterminous United States based on network size, structure, resistance to fragmentation, and dam prevalence. We also identified 2080 disproportionately important lakes for maintaining intact networks (i.e., hubs; 2% of all network lakes) and analyzed the protection status of hubs and potential freshwater corridors. Just 3% of networks received high connectivity scores based on their large size and structure (medians of 1303 lakes, 498.6 km north–south stream distance), but these also contained a median of 454 dams. In contrast, undammed networks (17% of networks) were considerably smaller (medians of six lakes, 7.2 km north–south stream distance), indicating that the functional connectivity of the largest potential freshwater corridors in the conterminous United States currently may be diminished compared with smaller, undammed networks. Network lakes and hubs were protected at similar rates nationally across different levels of protection (8%–18% and 6%–20%, respectively), but were generally more protected in the western United States. Our results indicate that conterminous United States protection of major freshwater corridors and the hubs that maintain them generally fell short of the international conservation goal of protecting an ecologically representative, well‐connected set of fresh waters (≥17%) by 2020 (Aichi Target 11). Conservation planning efforts might consider focusing on restoring natural hydrologic connectivity at or near hubs, particularly in larger networks, less protected, or biodiverse regions, to support freshwater biodiversity conservation under climate change.