skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Changing Biogeochemistry of the Arctic Ocean: Surface Nutrient and CO2 Cycling in a Warming, Melting North
The physical system of the Arctic is changing in profound ways, with implications for the transport of nutrients to and from the Arctic Ocean as well as the internal cycling of material on shelves and in deep basins. Significant increases in Arctic Ocean primary production have been observed in the last two decades, potentially driven by enhancements to a suite of mechanisms that increase nutrient availability to upper ocean waters, including transport from adjacent subpolar regions, storm-induced mixing, and mobilization of nutrients from terrestrial pools. The relative strength of these mechanisms varies substantially within Arctic Ocean subregions, leading to a mosaic of biogeochemical responses. Changes in primary production are also driving regional changes in the biologically mediated air-sea exchange of CO2, while warming, enhanced stratification, and increased mobilization of carbon from terrestrial pools are also driving regionally variable trends.  more » « less
Award ID(s):
1949593
PAR ID:
10397327
Author(s) / Creator(s):
Date Published:
Journal Name:
Oceanography
ISSN:
1042-8275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jones (Ed.)
    The addition of terrestrial inputs to the ocean can have cascading impacts on coastal biogeochemistry by directly altering the water chemistry and indirectly changing ecosystem metabolism, which also influences water chemistry. Here, we use submarine groundwater discharge (SGD) as a model system to examine the direct geochemical and indirect biologically mediated effects of terrestrial nutrient subsidies on a fringing coral reef. We hypothesize that the addition of new solutes from SGD alters ecosystem metabolic processes including net ecosystem production and calcification, thereby changing the patterns of uptake and release of carbon by benthic organisms. SGD is a common land–sea connection that delivers terrestrially sourced nutrients, carbon dioxide, and organic matter to coastal ecosystems. Our research was conducted at two distinct coral reefs in Moʻorea, French Polynesia, characterized by contrasting flow regimes and SGD biogeochemistry. Using a Bayesian structural equation model, our research elucidates the direct geochemical and indirect biologically mediated effects of SGD on both dissolved organic and inorganic carbon pools. We reveal that SGD‐derived nutrients enhance both net ecosystem production and respiration. Furthermore, the study demonstrates that SGD‐induced alterations in net ecosystem production significantly influence pH dynamics, ultimately impacting net ecosystem calcification. Notably, the study underscores the context‐dependent nature of these cascading direct and indirect effects resulting from SGD, with flow conditions and the composition of the terrestrial inputs playing pivotal roles. Our research provides valuable insights into the interplay between terrestrial inputs and coral reef ecosystems, advancing our understanding of coastal carbon cycling and the broader implications of allochthonous inputs on ecosystem functioning. 
    more » « less
  2. Arctic rivers provide an integrated signature of the changing landscape and transmit signals of change to the ocean. Here, we use a decade of particulate organic matter (POM) compositional data to deconvolute multiple allochthonous and autochthonous pan-Arctic and watershed-specific sources. Constraints from carbon-to-nitrogen ratios (C:N), δ 13 C, and Δ 14 C signatures reveal a large, hitherto overlooked contribution from aquatic biomass. Separation in Δ 14 C age is enhanced by splitting soil sources into shallow and deep pools (mean ± SD: −228 ± 211 vs. −492 ± 173‰) rather than traditional active layer and permafrost pools (−300 ± 236 vs. −441 ± 215‰) that do not represent permafrost-free Arctic regions. We estimate that 39 to 60% (5 to 95% credible interval) of the annual pan-Arctic POM flux (averaging 4,391 Gg/y particulate organic carbon from 2012 to 2019) comes from aquatic biomass. The remainder is sourced from yedoma, deep soils, shallow soils, petrogenic inputs, and fresh terrestrial production. Climate change-induced warming and increasing CO 2 concentrations may enhance both soil destabilization and Arctic river aquatic biomass production, increasing fluxes of POM to the ocean. Younger, autochthonous, and older soil-derived POM likely have different destinies (preferential microbial uptake and processing vs. significant sediment burial, respectively). A small (~7%) increase in aquatic biomass POM flux with warming would be equivalent to a ~30% increase in deep soil POM flux. There is a clear need to better quantify how the balance of endmember fluxes may shift with different ramifications for different endmembers and how this will impact the Arctic system. 
    more » « less
  3. Abstract Microalgae are the main source of the omega‐3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), essential for the healthy development of most marine and terrestrial fauna including humans. Inverse correlations of algal EPA and DHA proportions (% of total fatty acids) with temperature have led to suggestions of a warming‐induced decline in the global production of these biomolecules and an enhanced importance of high latitude organisms for their provision. The cold Arctic Ocean is a potential hotspot of EPA and DHA production, but consequences of global warming are unknown. Here, we combine a full‐seasonal EPA and DHA dataset from the Central Arctic Ocean (CAO), with results from 13 previous field studies and 32 cultured algal strains to examine five potential climate change effects; ice algae loss, community shifts, increase in light, nutrients, and temperature. The algal EPA and DHA proportions were lower in the ice‐covered CAO than in warmer peripheral shelf seas, which indicates that the paradigm of an inverse correlation of EPA and DHA proportions with temperature may not hold in the Arctic. We found no systematic differences in the summed EPA and DHA proportions of sea ice versus pelagic algae, and in diatoms versus non‐diatoms. Overall, the algal EPA and DHA proportions varied up to four‐fold seasonally and 10‐fold regionally, pointing to strong light and nutrient limitations in the CAO. Where these limitations ease in a warming Arctic, EPA and DHA proportions are likely to increase alongside increasing primary production, with nutritional benefits for a non‐ice‐associated food web. 
    more » « less
  4. Abstract We use a modern Earth system model to approximate the relative importance of ice versus temperature on Arctic marine ecosystem dynamics. We show that while the model adequately simulates ice volume, water temperature, air‐sea CO2flux, and annual primary production in the Arctic, itunderestimates upper water column nitrate across the region. This nitrate bias is likely responsible for the apparent underestimation of ice algae production. Despite this shortcoming, the model appears to be a useful tool for exploring the impacts of environmental change on phytoplankton production and carbon dynamics over the Arctic Ocean. Our experiments indicate that under a warmer climate scenario, the percentage of ocean warming that could be apportioned to a reduction in ice area ranged from 11% to 100%, while decreasing ice area could account for 22–100% of the increase in annual ocean primary production. The change to CO2air‐sea flux in response to ice and temperature changes averaged an Arctic‐wide 5.5 Tg C yr−1(3.5%) increase, into the ocean. This increased carbon sink may be short‐lived, as ice cover continues to decrease and the ocean warms. The change in carbon fixation from phytoplankton in response to increased temperatures and reduced ice was generally more than a magnitude larger than the changes to CO2flux, highlighting the importance of fully considering changes to the marine ecosystem when assessing Arctic carbon cycle dynamics. Our work demonstrates the importance of ice dynamics in controlling ocean warming and production and thus the need for well‐behaved ice and BGC models within Earth system models if we hope to accurately predict Arctic changes. 
    more » « less
  5. Abstract This paper is the first comprehensive synthesis of what is currently known about the different natural and anthropogenic fluxes of rhenium (Re) on Earth's surface. We highlight the significant role of anthropogenic mobilization of Re, which is an important consideration in utilizing Re in the context of a biogeochemical tracer or proxy. The largest natural flux of Re derives from chemical weathering and riverine transport to the ocean (dissolved = 62 × 106 g yr−1and particulate = 5 × 106 g yr−1). This review reports a new global average [Re] of 16 ± 2 pmol L−1, or 10 ± 1 pmol L−1for the inferred pre‐anthropogenic concentration without human impact, for rivers draining to the ocean. Human activity via mining (including secondary mobilization), coal combustion, and petroleum combustion mobilize approximately 560 × 106 g yr−1Re, which is more than any natural flux of Re. There are several poorly constrained fluxes of Re that merit further research, including: submarine groundwater discharge, precipitation (terrestrial and oceanic), magma degassing, and hydrothermal activity. The mechanisms and the main host phases responsible for releasing (sources) or sequestrating (sinks) these fluxes remain poorly understood. This study also highlights the use of dissolved [Re] concentrations as a tracer of oxidation of petrogenic organic carbon, and stable Re isotopes as proxies for changes in global redox conditions. 
    more » « less