skip to main content


Title: Novel device to collect deep‐sea porewater in situ: A focus on benthic carbonate chemistry
Abstract

We have designed, built, tested, and deployed a novel device to extract porewater from deep‐sea sediments in situ, constructed to work with a standard multicorer. Despite the importance of porewater measurements for numerous applications, many sampling artifacts can bias data and interpretation during traditional porewater processing from shipboard‐processed cores. A well‐documented artifact occurs in deep‐sea porewater when carbonate precipitates during core recovery as a function of temperature and pressure changes, while porewater is in contact with sediment grains before filtration, thereby lowering porewater alkalinity and dissolved inorganic carbon (DIC). Here, we present a novel device built to obviate these sampling artifacts by filtering porewater in situ on the seafloor, with a focus near the sediment–water interface on cm‐scale resolution, to obtain accurate porewater profiles. We document 1–10% alkalinity loss in shipboard‐processed sediment cores compared to porewater filtered in situ, at depths of 1600–3200 m. We also show that alkalinity loss is a function of both weight % sedimentary CaCO3and water column depth. The average ratio of alkalinity loss to DIC loss in shipboard‐processed sediment cores relative to in situ porewater is 2.2, consistent with the signal expected from carbonate precipitation. In addition to collecting porewater for defining natural profiles, we also conducted the first in situ dissolution experiments within the sediment column using isotopically labeled calcite. We present evidence of successful deployments of this device on and adjacent to the Cocos Ridge in the Eastern Equatorial Pacific across a range of depths and calcite saturation states.

 
more » « less
Award ID(s):
1834492
NSF-PAR ID:
10397410
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography: Methods
Volume:
21
Issue:
2
ISSN:
1541-5856
Page Range / eLocation ID:
p. 82-97
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. International Ocean Discovery Program (IODP) Expedition 357 successfully cored an east–west transect across the southern wall of Atlantis Massif on the western flank of the Mid-Atlantic Ridge (MAR) to study the links between serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. The primary goals of this expedition were to (1) examine the role of serpentinization in driving hydrothermal systems, sustaining microbial communities, and sequestering carbon; (2) characterize the tectonomagmatic processes that lead to lithospheric heterogeneities and detachment faulting; and (3) assess how abiotic and biotic processes change with variations in rock type and progressive exposure on the seafloor. To accomplish these objectives, we developed a coring and sampling strategy centered on the use of seabed drills—the first time that such systems have been used in the scientific ocean drilling programs. This technology was chosen in the hope of achieving high recovery of the carbonate cap sequences and intact contact and deformation relationships. The expedition plans also included several engineering developments to assess geochemical parameters during drilling; sample bottom water before, during, and after drilling; supply synthetic tracers during drilling for contamination assessment; acquire in situ electrical resistivity and magnetic susceptibility measurements for assessing fractures, fluid flow, and extent of serpentinization; and seal boreholes to provide opportunities for future experiments. Expedition 359 was designed to address changes in sea level and currents, along with monsoon evolution in the Indian Ocean. The Maldives archipelago holds a unique and mostly unread Indian Ocean archive of the evolving Cenozoic icehouse world. Cores from eight drill sites in the Inner Sea of the Maldives provide the tropical marine record that is key for better understanding the effects of this global evolution in the Indo-Pacific realm. In addition, the bank geometries of the carbonate archipelago provide a physical record of changing sea level and ocean currents. The bank growth occurs in pulses of aggradation and progradation that are controlled by sea level fluctuations during the early and middle Miocene, including the mid-Miocene Climate Optimum. A dramatic shift in development of the carbonate edifice from a sea level–controlled to a predominantly current-controlled system appears to be directly linked to the evolving Indian monsoon. This phase led to a twofold configuration of bank development: bank growth continued in some parts of the edifice, whereas in other places, banks drowned. Drowning steps seem to coincide with onset and intensification of the monsoon-related current system and subsequent deposition of contourite fans and large-scale sediment drifts. As such, the drift deposits will provide a continuous record of Indian monsoon development in the region of the Maldives. A major focus of Expedition 359 was to date precisely the onset of the current system. This goal was successfully completed during the expedition. The second important outcome of Expedition 359 was groundtruthing the hypothesis that the dramatic, pronounced change in style of the carbonate platform sequence stacking was caused by a combination of relative sea level fluctuations and ocean current system changes. These questions are directly addressed by the shipboard scientific data. In addition, Expedition 359 cores will provide a complete Neogene δ13C record of the platform and platform margin sediments and a comparison with pelagic records over the same time period. This comparison will allow assessment of the extent to which platform carbonates record changes in the global carbon cycle and whether changes in the carbon isotopic composition of organic and inorganic components covary and the implications this has on the deep-time record. This determination is important because such records are the only type that exists in deep time. 
    more » « less
  2. Abstract

    Organic and inorganic stable isotopes of lacustrine carbonate sediments are commonly used in reconstructions of ancient terrestrial ecosystems and environments. Microbial activity and local hydrological inputs can alter porewater chemistry (e.g., pH, alkalinity) and isotopic composition (e.g., δ18Owater, δ13CDIC), which in turn has the potential to impact the stable isotopic compositions recorded and preserved in lithified carbonate. The fingerprint these syngenetic processes have on lacustrine carbonate facies is yet unknown, however, and thus, reconstructions based on stable isotopes may misinterpret diagenetic records as broader climate signals. Here, we characterize geochemical and stable isotopic variability of carbonate minerals, organic matter, and water within one modern lake that has known microbial influences (e.g., microbial mats and microbialite carbonate) and combine these data with the context provided by 16S rRNA amplicon sequencing community profiles. Specifically, we measure oxygen, carbon, and clumped isotopic compositions of carbonate sediments (δ18Ocarb, δ13Ccarb, ∆47), as well as carbon isotopic compositions of bulk organic matter (δ13Corg) and dissolved inorganic carbon (DIC; δ13CDIC) of lake and porewater in Great Salt Lake, Utah from five sites and three seasons. We find that facies equivalent to ooid grainstones provide time‐averaged records of lake chemistry that reflect minimal alteration by microbial activity, whereas microbialite, intraclasts, and carbonate mud show greater alteration by local microbial influence and hydrology. Further, we find at least one occurrence of ∆47isotopic disequilibrium likely driven by local microbial metabolism during authigenic carbonate precipitation. The remainder of the carbonate materials (primarily ooids, grain coatings, mud, and intraclasts) yield clumped isotope temperatures (T(∆47)), δ18Ocarb, and calculated δ18Owaterin isotopic equilibrium with ambient water and temperature at the time and site of carbonate precipitation. Our findings suggest that it is possible and necessary to leverage diverse carbonate facies across one sedimentary horizon to reconstruct regional hydroclimate and evaporation–precipitation balance, as well as identify microbially mediated carbonate formation.

     
    more » « less
  3. The magnesium to calcium ratio (Mg/Ca) of benthic foraminiferal calcite serves as an important tool for reconstructing past deep water temperature. Application of this proxy relies upon accurate calibrations and an understanding of the factors that may influence the Mg/Ca ratios of foraminifer tests. Core-top calibrations are a method of assessing the temperature sensitivity of deep-dwelling benthic taxa which are difficult to raise in culture. This study contributes a new set of Mg/Ca core-top measurements for the infaunal species Uvigerina peregrina derived from a suite of sediment cores in the Southwest Pacific spanning water depths of 600 to 4400 m. Results agreed with previous calibrations for samples shallower than 2000 m, but unexpectedly high Mg/Ca values were found between the depths of 2400 and 3300 m, necessitating further investigation into potential non-temperature influences. Specimens of different morphotypes were analyzed separately, but variations between hispid and costate samples failed to account for the high-Mg anomaly observed. Lack of correlation between Mg/Ca and the contaminant indicators Mn/Ca, Al/Ca, Fe/Ca, and Ti/Ca suggests contaminant phases are not the source of excess Mg. Laser ablation ICP-MS analysis of chamber cross-sections revealed that the high-Mg signature is located within the interior of test walls, rather than contained in an external coating or contaminant phase. The high- Mg anomaly observed in mid-depth New Zealand waters is likely related to a secondary, non-temperature control on Mg incorporation. Samples with excess Mg are those most strongly influenced by carbon-rich (high dissolved inorganic carbon, high alkalinity) waters flowing south from the northern Pacific, suggesting that inorganic carbonate chemistry plays a role. 
    more » « less
  4. Abstract

    The cycling of biologically produced calcium carbonate (CaCO3) in the ocean is a fundamental component of the global carbon cycle. Here, we present experimental determinations of in situ coccolith and foraminiferal calcite dissolution rates. We combine these rates with solid phase fluxes, dissolved tracers, and historical data to constrain the alkalinity cycle in the shallow North Pacific Ocean. The in situ dissolution rates of coccolithophores demonstrate a nonlinear dependence on saturation state. Dissolution rates of all three major calcifying groups (coccoliths, foraminifera, and aragonitic pteropods) are too slow to explain the patterns of both CaCO3sinking flux and alkalinity regeneration in the North Pacific. Using a combination of dissolved and solid‐phase tracers, we document a significant dissolution signal in seawater supersaturated for calcite. Driving CaCO3dissolution with a combination of ambient saturation state and oxygen consumption simultaneously explains solid‐phase CaCO3flux profiles and patterns of alkalinity regeneration across the entire N. Pacific basin. We do not need to invoke the presence of carbonate phases with higher solubilities. Instead, biomineralization and metabolic processes intimately associate the acid (CO2) and the base (CaCO3) in the same particles, driving the coupled shallow remineralization of organic carbon and CaCO3. The linkage of these processes likely occurs through a combination of dissolution due to zooplankton grazing and microbial aerobic respiration within degrading particle aggregates. The coupling of these cycles acts as a major filter on the export of both organic and inorganic carbon to the deep ocean.

     
    more » « less
  5. Abstract

    Collecting detailed surveys of the environmental and biological distributions in the epipelagic and mesopelagic ocean is important for understanding the basic processes that govern these expansive habitats and influence the earth system at large. Common ocean sampling platforms (e.g., net systems, moored, and shipboard sensors), are often unable to resolve marine biota at scales comparable to the variability associated with their own behavior or that of their physical environment. Newer approaches using mobile robotic systems carrying multiple environmental sensors have enabled detailed interrogation of the fine and sub‐mesoscale distribution of animals and have provided more context for the water column structure. We integrated a dual‐frequency broadband split‐beam echosounder (Simrad EK80 with 70 and 200 kHz transducers) into the Wire Flyer profiling vehicle to achieve concurrent hydrographic and acoustic sections in the midwater environment (0–1000 m) at novel scales. The Wire Flyer provides high‐resolution repeat profiling (0–2.5 m s−1up and down velocity) within specified water column depth bands typically spanning 300–400 m. This system can provide acoustic backscatter data at depths unavailable to shipboard surveys due to attenuation limits and can be operated in tandem with conventional shipboard echosounders to provide overlapping acoustic coverage with concurrent hydrographic sections. The side‐looking transducer orientation, as opposed to the traditional vertically oriented arrangement on ships, samples orthogonal to the vehicle's profiling survey path and provides a direct measurement of animal distributions in the horizontal. The processed data have demonstrated the system's capacity to track migrating layers and resolve coherent biological patches and single targets in the horizontal, rising seafloor gas plumes, and scattering layer distributions tightly coupled to measured sub‐mesoscale features such as strong vertical oxygen gradients.

     
    more » « less