skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Changes in light absorption and composition of chromophoric marine-dissolved organic matter across a microbial bloom
Marine chromophoric dissolved organic matter (m-CDOM) mediates many vital photochemical processes at the ocean's surface. Isolating m-CDOM within the chemical complexity of marine dissolved organic matter has remained an analytical challenge. The SeaSCAPE campaign, a large-scale mesocosm experiment, provided a unique opportunity to probe the in situ production of m-CDOM across phytoplankton and microbial blooms. Results from mass spectrometry coupled with UV-VIS spectroscopy reveal production of a chemodiverse set of compounds well-correlated with increases in absorbance after a bacterial bloom, indicative of autochthonous m-CDOM production. Notably, many of the absorbing compounds were found to be enriched in nitrogen, which may be essential to chromophore function. From these results, quinoids, porphyrins, flavones, and amide-like compounds were identified via structural analysis and may serve as important photosensitizers in the marine boundary layer. Overall, this study demonstrates a step forward in identifying and characterizing m-CDOM using temporal mesocosm data and integrated UV-VIS spectroscopy and mass spectrometry analyses.  more » « less
Award ID(s):
1801971
PAR ID:
10397572
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Science: Processes & Impacts
Volume:
24
Issue:
10
ISSN:
2050-7887
Page Range / eLocation ID:
1923 to 1933
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gan, Jay; Hopke, Philip; Ouyang, Wei; Paoletti, Elena (Ed.)
    Phenolic aldehydes are widespread pollutants in water and soil, originating from lignin-based agro-industries. With increasing wastewater pollution, improved treatment systems are necessary to degrade phenolic aldehydes into less hazardous compounds. Over the past two decades, ozonolysis wastewater treatment has been implemented in the United States, Japan, and South Korea. However, the mechanistic understanding of phenolic aldehyde ozonolysis in water remains incomplete. This study investigates the ozonolysis of three model phenolic aldehydes (syringaldehyde, vanillin, 4-hydroxybenzaldehyde) in representative concentrations for wastewater of 0.5–1.5 mM and pH 4–8. Each compound solution was sparged for 30 min at a fixed O3(g) flow (0.20 to 1.00 L min−1), providing steady-state dissolved concentrations of 5.4 to 16.2 μM. Reactant loss and product generation were monitored using UV–visible (UV–vis) spectroscopy, ultra-high pressure liquid chromatography (UHPLC) with UV–vis and mass spectrometry (MS) detection, and ion chromatography with conductivity and MS detection of anions. Identified products based on their mass-to-charge ratio (m/z−) included oxalic acid (89), glycolic acid (75), formic acid (45), and maleic acid (115). Additional intermediate products were identified under various reaction conditions, revealing competing mechanisms in the degradative oxidation of aqueous phenolic aldehydes exposed to O3(g). A unifying mechanism is proposed to explain the production of smaller, less toxic molecules during phenolic aldehyde ozonolysis, enhancing water quality. This mechanism serves as a basis for evaluating the implementation of ozonolysis in scaled-up water treatment processes. 
    more » « less
  2. Abstract Dissolved organic matter (DOM) impacts the structure and function of aquatic ecosystems. DOM absorbs light in the UV and visible (UV–Vis) wavelengths, thus impacting light attenuation. Because absorption by DOM depends on its composition, UV–Vis absorbance is used to constrain DOM composition, source, and amount. Ferric iron, Fe(III), also absorbs in the UV–Vis; when Fe(III) is present, DOM-attributed absorbance is overestimated. Here, we explore how differing behavior of DOM and Fe(III) at the catchment scale impacts UV–Vis absorbance and evaluate how system-specific variability impacts the effectiveness of existing Fe(III) correction factors in a temperate watershed. We sampled five sites in the Connecticut River mainstem bi-weekly for ~ 1.5 years, and seven sites in the Connecticut River watershed once during the summer 2019. We utilized size fractionation to isolate the impact of DOM and Fe(III) on absorbance and show that variable contributions of Fe(III) to absorbance at 254 nm (a 254 ) and 412 nm (a 412 ) by size fraction complicates correction for Fe(III). We demonstrate that the overestimation of DOM-attributed absorbance by Fe(III) is correlated to the Fe(III):dissolved organic carbon concentration ratio; thus, overestimation can be high even when Fe(III) is low. a 254 overestimation is highly variable even within a single system, but can be as high as 53%. Finally, we illustrate that UV-Vis overestimation might impart bias to seasonal, discharge, and land-use trends in DOM quality. Together, these findings argue that Fe(III) should be measured in tandem with UV–Vis absorbance for estimates of CDOM composition or amount. 
    more » « less
  3. Dissolved organic matter (DOM) is a complex mixture of organic compounds found in all natural waters. Its composition affects its reactivity towards numerous processes. Its composition is a function of both its source (e.g., allochthonous or autochthonous) as well as the extent of environmental processing it has undergone (e.g., chemical or biological degradation). Ultraviolet-visible (UV-vis) spectroscopy is an analytical technique commonly used to assess the composition of dissolved organic matter in water samples. Here, we present spectra from Lake Mendota samples collected from June - November in 2017 at the surface of Lake Mendota as well as at specific depths within the water column. All samples were collected near the NTL-LTER research buoy. Absorbance values are listed for wavelengths 200 - 800 nm for each sample. 
    more » « less
  4. Dissolved organic matter (DOM) plays an important role in carbon cycling in natural waters. The processing of DOM in these waters can occur via photooxidation, or interaction with sunlight. This processing can lead to the production of CO2, and also the alteration of organic compounds that make up DOM. It is likely that the extent of photooxidation is at least partially determined by the chemical composition of DOM. Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to characterize the dissolved organic matter at the molecular level for all water samples, both before and after light exposure to better understand the photooxidation of DOM. Chemical formulas were assigned to mass to generated mass to charge ratios using a custom script in R, resulting in a list of chemical formula assignments for each DOM sample, at multiple light exposure time points. 
    more » « less
  5. Microplastics in the aquatic system are among the many inevitable consequences of plastic pollution, which has cascading environmental and public health impacts. Our study aimed at analyzing surface interactions and leachate production of six microplastics under ultraviolet (UV) irradiation. Leachate production was analyzed for the dissolved organic content (DOC), UV 254 , and fluorescence through excitation emission (EEM) to determine the kinetics and mechanisms involved in the release of organic matter by UV irradiation. The results suggested there was a clear trend of organic matter being released from the surface of the six microplastics caused by UV irradiation based on DOC, UV 254 absorbance, and EEM intensity increasing with time. Polystyrene had the greatest and fastest increase in DOC concentrations, followed by the resin coated polystyrene. Experiments conducted at different temperatures indicated the endothermic nature of these leaching mechanisms. The differences in leachate formation for different polymers were attributed to their chemical makeup and their potency to interact with UV. The aged microplastic samples were analyzed by Fourier-transform infrared spectroscopy (FT-IR), Raman, and X-ray photoelectron spectroscopy (XPS), to determine the surface changes with respect to leachate formation. Results indicated that all microplastics had increasing carbonyl indices when aged by UV with polystyrene being the greatest. These findings affirm that the leachate formation is an interfacial interaction and could be a significant source of organic compound influx to natural waters due to the extremely abundant occurrence of microplastics and their large surface areas. 
    more » « less