skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring the direct and indirect effects of elite influence on public opinion
Political elites both respond to public opinion and influence it. Elite policy messages can shape individual policy attitudes, but the extent to which they do is difficult to measure in a dynamic information environment. Furthermore, policy messages are not absorbed in isolation, but spread through the social networks in which individuals are embedded, and their effects must be evaluated in light of how they spread across social environments. Using a sample of 358 participants across thirty student organizations at a large Midwestern research university, we experimentally investigate how real social groups consume and share elite information when evaluating a relatively unfamiliar policy area. We find a significant, direct effect of elite policy messages on individuals’ policy attitudes. However, we find no evidence that policy attitudes are impacted indirectly by elite messages filtered through individuals’ social networks. Results illustrate the power of elite influence over public opinion.  more » « less
Award ID(s):
1740761
PAR ID:
10397672
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Gutiérrez-Pérez, José
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
11
ISSN:
1932-6203
Page Range / eLocation ID:
e0257335
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cremonini, Marco (Ed.)
    Understanding the spread of false or dangerous beliefs—often called misinformation or disinformation—through a population has never seemed so urgent. Network science researchers have often taken a page from epidemiologists, and modeled the spread of false beliefs as similar to how a disease spreads through a social network. However, absent from those disease-inspired models is an internal model of an individual’s set of current beliefs, where cognitive science has increasingly documented how the interaction between mental models and incoming messages seems to be crucially important for their adoption or rejection. Some computational social science modelers analyze agent-based models where individuals do have simulated cognition, but they often lack the strengths of network science, namely in empirically-driven network structures. We introduce a cognitive cascade model that combines a network science belief cascade approach with an internal cognitive model of the individual agents as in opinion diffusion models as a public opinion diffusion (POD) model, adding media institutions as agents which begin opinion cascades. We show that the model, even with a very simplistic belief function to capture cognitive effects cited in disinformation study (dissonance and exposure), adds expressive power over existing cascade models. We conduct an analysis of the cognitive cascade model with our simple cognitive function across various graph topologies and institutional messaging patterns. We argue from our results that population-level aggregate outcomes of the model qualitatively match what has been reported in COVID-related public opinion polls, and that the model dynamics lend insights as to how to address the spread of problematic beliefs. The overall model sets up a framework with which social science misinformation researchers and computational opinion diffusion modelers can join forces to understand, and hopefully learn how to best counter, the spread of disinformation and “alternative facts.” 
    more » « less
  2. Vincenot, Christian (Ed.)
    Effectively communicating risk is critical to reducing conflict in human-wildlife interactions. Using a survey experiment fielded in the midst of contentious public debate over flying fox management in urban and suburban areas of Australia, we find that stories with characters (i.e., narratives) are more effective than descriptive information at mobilizing support for different forms of bat management, including legal protection, relocation, and habitat restoration. We use conditional process analysis to show that narratives, particularly with accompanying images, are effective because they cause emotional reactions that influence risk perception, which in turn drives public opinion about strategies for risk mitigation. We find that prior attitudes towards bats matter in how narrative messages are received, in particular in how strongly they generate shifts in affective response, risk perception, and public opinion. Our results suggest that those with warm prior attitudes towards bats report greater support for bat dispersal when they perceive impacts from bats to be more likely, while those with cool priors report greater support for bat protection when they perceive impacts from bats to be more positive, revealing 1) potential opportunities for targeted messaging to boost public buy-in of proposals to manage risks associated with human-wildlife interactions, and 2) potential vulnerabilities to disinformation regarding risk. 
    more » « less
  3. People sometimes change their opinions when they discuss things with each other. Researchers can use mathematics to study opinion changes in simplifications of real-life situations. These simplified scenarios, which are examples of mathematical models, help researchers explore how people influence each other through their social interactions. In today’s digital world, these models can help us learn how to promote the spread of accurate information and reduce the spread of inaccurate information. In this article, we discuss a simple mathematical model of opinion changes that arise from social interactions. We briefly describe what opinion models can tell us and how researchers try to make them more realistic. 
    more » « less
  4. During the COVID-19 pandemic, conflicting opinions on physical distancing swept across social media, affecting both human behavior and the spread of COVID-19. Inspired by such phenomena, we construct a two-layer multiplex network for the coupled spread of a disease and conflicting opinions. We model each process as a contagion. On one layer, we consider the concurrent evolution of two opinions — pro-physical-distancing and anti-physical-distancing — that compete with each other and have mutual immunity to each other. The disease evolves on the other layer, and individuals are less likely (respectively, more likely) to become infected when they adopt the pro-physical-distancing (respectively, anti-physical-distancing) opinion. We develop approximations of mean-field type by generalizing monolayer pair approximations to multilayer networks; these approximations agree well with Monte Carlo simulations for a broad range of parameters and several network structures. Through numerical simulations, we illustrate the influence of opinion dynamics on the spread of the disease from complex interactions both between the two conflicting opinions and between the opinions and the disease. We find that lengthening the duration that individuals hold an opinion may help suppress disease transmission, and we demonstrate that increasing the cross-layer correlations or intra-layer correlations of node degrees may lead to fewer individuals becoming infected with the disease. 
    more » « less
  5. Individual-level interactions shape societal or economic processes, such as infectious diseases spreading, stock prices fluctuating and public opinion shifting. Understanding how the interaction of different individuals affects collective outcomes is more important than ever, as the internet and social media develop. Social networks representing individuals' influence relations play a key role in understanding the connections between individual-level interactions and societal or economic outcomes. Recent research has revealed how the topology of a social network affects collective decision-making in a community. Furthermore, the traits of individuals that determine how they process received information for making decisions also change a community's collective decisions. In this work, we develop stochastic processes to generate networks of individuals with two simple traits: Being a conformist and being an anticonformist. We introduce a novel deterministic voter model for a trait-attributed network, where the individuals make binary choices following simple deterministic rules based on their traits. We show that the simple deterministic rules can drive unpredictable fluctuations of collective decisions which eventually become periodic. We study the effects of network topology and trait distribution on the first passage time for a sequence of collective decisions showing periodicity. 
    more » « less