skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PFAS – Forever Chemicals
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic fluorinated compounds. Today more than 4’700 PFAS molecules are known. These chemicals have a high resistance and physical stability. They repel water, dirt, and grease. Due to these properties they are used in a wide range of products, from ski-wax and waterproof textiles to fire extinguishers and food packaging. PFAS are the most persistent synthetic chemicals. They do not occur in nature, and they hardly degrade in nature. Therefore they are called “Forever Chemicals”. The number of PFAS detections in the environment and in various organisms worldwide is increasing. The recognition of their bioaccumulative properties, their high mobility and their adverse effects on biological systems has led and is still leading to a regulation of multiple PFAS molecules. The response of the industry was the introduction of other PFAS as substitutes, which are now themselves increasingly detected in the environment. Worrying is that the list of negative health effects from an exposure to PFAS is becoming longer every year.  more » « less
Award ID(s):
2147334
PAR ID:
10397728
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Report EUT-P4-22FS-04 / Institute for Biomass and Resource Efficiency
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic organic substances with diverse structures, properties, uses, bioaccumulation potentials and toxicities. Despite this high diversity, all PFAS are alike in that they contain perfluoroalkyl moieties that are extremely resistant to environmental and metabolic degradation. The vast majority of PFAS are therefore either non-degradable or transform ultimately into stable terminal transformation products (which are still PFAS). Under the European chemicals regulation this classifies PFAS as very persistent substances (vP). We argue that this high persistence is sufficient concern for their management as a chemical class, and for all “non-essential” uses of PFAS to be phased out. The continual release of highly persistent PFAS will result in increasing concentrations and increasing probabilities of the occurrence of known and unknown effects. Once adverse effects are identified, the exposure and associated effects will not be easily reversible. Reversing PFAS contamination will be technically challenging, energy intensive, and costly for society, as is evident in the efforts to remove PFAS from contaminated land and drinking water sources. 
    more » « less
  2. Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals colloquially known as “forever chemicals” because of their high persistence. PFAS have been detected in the blood, liver, kidney, heart, muscle and brain of various species. Although brain is not a dominant tissue for PFAS accumulation compared to blood and liver, adverse effects of PFAS on brain functions have been identified. Here, we review studies related to the absorption, accumulation, distribution and toxicity of PFAS in the brain. We summarize evidence on two potential mechanisms of PFAS entering the brain: initiating blood–brain barrier (BBB) disassembly through disrupting tight junctions and relying on transporters located at the BBB. PFAS with diverse structures and properties enter and accumulate in the brain with varying efficiencies. Compared to long-chain PFAS, short-chain PFAS may not cross cerebral barriers effectively. According to biomonitoring studies and PFAS exposure experiments, PFAS can accumulate in the brain of humans and wildlife species. With respect to the distribution of PFAS in specific brain regions, the brain stem, hippocampus, hypothalamus, pons/medulla and thalamus are dominant for PFAS accumulation. The accumulation and distribution of PFAS in the brain may lead to toxic effects in the central nervous system (CNS), including PFAS-induced behavioral and cognitive disorders. The specific mechanisms underlying such PFAS-induced neurotoxicity remain to be explored, but two major potential mechanisms based on current understanding are PFAS effects on calcium homeostasis and neurotransmitter alterations in neurons. Based on the information available about PFAS uptake, accumulation, distribution and impacts on the brain, PFAS have the potential to enter and accumulate in the brain at varying levels. The balance of existing studies shows there is some indication of risk in animals, while the human evidence is mixed and warrants further scrutiny. 
    more » « less
  3. Despite decades of research on per- and polyfluoroalkyl substances (PFAS), fundamental obstacles remain to addressing worldwide contamination by these chemicals and their associated impacts on environmental quality and health. Here, we propose six urgent questions relevant to science, technology, and policy that must be tackled to address the “PFAS problem”: (1) What are the global production volumes of PFAS, and where are PFAS used? (2) Where are the unknown PFAS hotspots in the environment? (3) How can we make measuring PFAS globally accessible? (4) How can we safely manage PFAS-containing waste? (5) How do we understand and describe the health effects of PFAS exposure? (6) Who pays the costs of PFAS contamination? The importance of each question and barriers to progress are briefly described, and several potential paths forward are proposed. Given the diversity of PFAS and their uses, the extreme persistence of most PFAS, the striking ongoing lack of fundamental information, and the inequity of the health and environmental impacts from PFAS contamination, there is a need for scientific and regulatory communities to work together, with cooperation from PFAS-related industries, to fill in critical data gaps and protect human health and the environment. 
    more » « less
  4. The pervasive presence of per- and polyfluoroalkyl substances (PFAS) in the environment and their persistent nature raise significant concerns regarding their impact on human health. This review delves into the obesogenic potential of PFAS, shedding light on their mechanisms of action, epidemiological correlations with obesity and metabolic disorders, and the challenges faced in regulatory frameworks. PFAS, characterized by their carbon-fluorine chains, are ubiquitous in various consumer products, leading to widespread exposure through ingestion of contaminated food and water. Emerging evidence suggests that PFAS may act as endocrine-disrupting chemicals, interfering with lipid metabolism and hormone functions related to obesity. We examine in vitro, in vivo, human, and in silico studies that explore the interaction of PFAS with PPARs and other molecular targets, influencing adipogenesis and lipid homeostasis. Furthermore, the review highlights epidemiological studies investigating the association between maternal PFAS exposure and the risk of obesity in offspring, presenting mixed and inconclusive findings that underscore the complexity of PFAS effects on human health. Presently, there are major challenges in studying PFAS toxicity, including their chemical diversity and the limitations of current regulatory guidelines, potential remediation, and detoxification. This review emphasizes the need for a multidisciplinary approach, combining advanced analytical methods, in silico models, and comprehensive epidemiological studies, to unravel the obesogenic effects of PFAS and inform effective public health strategies. 
    more » « less
  5. Per- and polyfluoroalkyl substances (PFASs) are synthetic chemicals that are harmful to both the environment and human health. Using self-interaction-corrected Born–Oppenheimer molecular dynamics simulations, we provide the first real-time assessment of PFAS degradation in the presence of excess electrons. In particular, we show that the initial phase of the degradation involves the transformation of an alkane-type C–C bond into an alkene-type CC bond in the PFAS molecule, which is initiated by the trans elimination of fluorine atoms bonded to these adjacent carbon atoms. 
    more » « less