skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Concept Maps Lead to Better Problem Statements: An Empirical Study Measuring the Effects of Priming Students to Think in Systems
Challenges associated with the design and construction of the built environment are complex. Students need training to help them deal with this complexity and to help them explore and reframe problems early during project planning and design. Concept maps provide a visual representation of complex information and the relationships between this information. The research presented in this paper tested whether priming students to think in systems by asking them to draw concept maps changes how they construct problem statements. In total, 40 engineering students participated in the study. Half were asked to draw a concept map before constructing a problem statement about how to improve mobility systems around campus. The cognitive effort (i.e., time and words) students spent on the task and the number of unique system elements included in their problem statement were measured. Students that received the concept mapping intervention spent significantly more time thinking about the problem, developed longer problem statements, and included more unique elements of systems. These findings suggest using concept mapping can aid students’ conceptualization of complex problems.  more » « less
Award ID(s):
1929892
PAR ID:
10397730
Author(s) / Creator(s):
; ; ;
Editor(s):
Jazizadeh, F.; Shealy, T.; Garvin, M.
Date Published:
Journal Name:
Construction Research Congress 2022
Page Range / eLocation ID:
234 to 243
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The research presented in this paper tested whether drawing concept maps changes how engineering students construct design problem statements and whether these differences are observable in their brains. The process of identifying and constructing problem statements is a critical step in engineering design. Concept mapping has the potential to expand the problem space that students explore through the attention given to the relationship between concepts. It helps integrate existing knowledge in new ways. Engineering students (n=66) were asked to construct a problem statement to improve mobility on campus. Half of these students were randomly chosen to first receive instructions about how to develop a concept map and were asked to draw a concept map about mobility systems on campus. The semantic similarity of concepts in the students’ problem statements, the length of their problem statements, and their neurocognition when developing their statements were measured. The results indicated that students who were asked to first draw concept maps produced a more diverse problem statement with less semantically similar words. The students who first developed concept maps also produce significantly longer problem statements. Concept mapping changed students’ neurocognition. The students who used concept mapping elicited less cognitive activation in their left prefrontal cortex (PFC) and more concentrated activation in their right PFC. The right PFC is generally associated with divergent thinking and the left PFC is generally associated with convergent and analytical thinking. These results provide new insight into how educational interventions, like concept mapping, can change students’ cognition and neurocognition. Better understanding how concept maps, and other tools, help students approach complex problems and the associated changes that occur in their brain can lay the groundwork for novel advances in engineering education that support new tools and pedagogy development for design. 
    more » « less
  2. ASCE (Ed.)
    The research presented in this paper explores the effect of concept maps on students’ neurocognition when constructing engineering problem statements. In total, 66 engineering students participated in the experiment. Half of the students were asked to create a concept map illustrating all of the systems and stakeholders represented in a building on campus. The other half of students were not asked to draw a concept map. Both groups were then asked to construct an engineering problem statement about improvements to the building. While performing the problem statement task, their neurocognitive activation in the prefrontal cortex (PFC) was measured using a non-intrusive neuroimaging technique called functional near-infrared spectroscopy. The students that were asked to complete the concept mapping task required less cognitive effort to formulate and analyze their problem statements. The specific regions that were less activated were regions of the brain generally associated with working memory and problem evaluation. These results provide new insight into the changes in mental processing that occurs when using tools like concept maps and may provide helpful techniques for students to structure engineering problems. 
    more » « less
  3. Problem solvers vary their approaches to solving problems depending on the context of the problem, the requirements of the solution, and the ways in which the problems and material to solve the problem are represented, or representations. Representations take many forms (i.e. tables, graphs, figures, images, formulas, visualizations, and other similar contexts) and are used to communicate information to a problem solver. Engagement with certain representations varies between problem solvers and can influence design and solution quality. A problem solver’s evaluation of representations and the reasons for using a representation can be considered factors in problem-solving heuristics. These factors describe unique problem-solving behaviors that can help understand problem solvers. These behaviors may lead to important relationships between a problem solver’s decisions and their ability to solve a problem and overall quality of the solution. Therefore, we pose the following research question: How do factors of problem-solving heuristics describe the unique behaviors of engineering students as they solve multiple problems? To answer this question, we interviewed 16 undergraduate engineering students studying civil engineering. The interviews consisted of a problem-solving portion that was followed immediately by a semi-structured retrospective interview with probing questions created based on the real time monitoring of the problem-solving interview using eye tracking techniques. The problem-solving portion consisted of solving three problems related to the concept of headloss in fluid flow through pipes. Each of the three problems included the same four representations that were used by the students as approaches to solving the problem. The representations are common ways to present the concept of headloss in pipe flow and included two formulas, a set of tables, and a graph. This paper presents a set of common reasons for why decisions were made during the problem-solving process that help to understand more about the problem-solving behavior of engineering students. 
    more » « less
  4. Introduction: The work reported here subscribes to the idea that the best way to learn - and thus, improve student educational outcomes - is through solving problems, yet recognizes that engineering students are generally provided insufficient opportunities to engage problems as they will be engaged in practice. Attempts to incorporate more open-ended, ill-structured experiences have increased but are challenging for faculty to implement because there are no systematic methods or approaches that support the educator in designing these learning experiences. Instead, faculty often start from the anchor of domain-specific concepts, an anchoring that is further reinforced by available textbook problems that are rarely open in nature. Open-ended problems are then created in ad-hoc ways, and in doing so, the problem-solving experience is often not realized as the instructor intended. Approach: The focus in this work is the development and preliminary implementation of a reflective approach to support instructors in examining the design intent of problem experiences. The reflective method combines concept mapping as developed by Joseph Novak with the work of David Jonassen and his characterization of problems and the forms of knowledge required to solve them. Results: We report on the development of a standard approach – a template -- for concept mapping of problems. As a demonstration, we applied the approach to a relatively simple, well-structured problem used in an introductory aerospace engineering course. Educator-created concept maps provided a visual medium for examining the connectivity of problem elements and forms of knowledge. Educator reflection after looking at and discussing the concept map revealed ways in which the problem engagement may differ from the perceived design intent. Implications: We consider the potential for the proposed method to support design and facilitation activities in problem-based learning (PBL) environments. We explore broader implications of the approach as it relates to 1) facilitating a priori faculty insights regarding student navigation of problem solving, 2) instructor reflection on problem design and facilitation, and 3) supporting problem design and facilitation. Additionally, we highlight important issues to be further investigated toward quantifying the value and limitations of the proposed approach. 
    more » « less
  5. ASEE (Ed.)
    The purpose of the research presented in this poster was to measure the change in neurocognitive processing that occurs from concept mapping in students’ brains. The research question is what are the effects of concept mapping on students’ neurocognition when developing design problem statements? We explored changes in students’ prefrontal cortex (PFC). The PFC is the neural basis of working memory and higher order cognitive processing, such as sustained attention, reasoning, and evaluations. Specific regions of interest in the PFC are illustrated. 
    more » « less