skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiple Matrix Gaussian Graphs Estimation
Summary Matrix-valued data, where the sampling unit is a matrix consisting of rows and columns of measurements, are emerging in numerous scientific and business applications. Matrix Gaussian graphical models are a useful tool to characterize the conditional dependence structure of rows and columns. We employ non-convex penalization to tackle the estimation of multiple graphs from matrix-valued data under a matrix normal distribution. We propose a highly efficient non-convex optimization algorithm that can scale up for graphs with hundreds of nodes. We establish the asymptotic properties of the estimator, which requires less stringent conditions and has a sharper probability error bound than existing results. We demonstrate the efficacy of our proposed method through both simulations and real functional magnetic resonance imaging analyses.  more » « less
Award ID(s):
1712580
PAR ID:
10397811
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of the Royal Statistical Society Series B: Statistical Methodology
Volume:
80
Issue:
5
ISSN:
1369-7412
Page Range / eLocation ID:
p. 927-950
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Representation learning is typically applied to only one mode of a data matrix, either its rows or columns. Yet in many applications, there is an underlying geometry to both the rows and the columns. We propose utilizing this coupled structure to perform co-manifold learning: uncovering the underlying geometry of both the rows and the columns of a given matrix, where we focus on a missing data setting. Our unsupervised approach consists of three components. We first solve a family of optimization problems to estimate a complete matrix at multiple scales of smoothness. We then use this collection of smooth matrix estimates to compute pairwise distances on the rows and columns based on a new multi-scale metric that implicitly introduces a coupling between the rows and the columns. Finally, we construct row and column representations from these multi- scale metrics. We demonstrate that our approach outperforms competing methods in both data visualization and clustering. 
    more » « less
  2. We develop a unified approach to bounding the largest and smallest singular values of an inhomogeneous random rectangular matrix, based on the non-backtracking operator and the Ihara-Bass formula for general random Hermitian matrices with a bipartite block structure. We obtain probabilistic upper (respectively, lower) bounds for the largest (respectively, smallest) singular values of a large rectangular random matrix X. These bounds are given in terms of the maximal and minimal 2-norms of the rows and columns of the variance profile of X. The proofs involve finding probabilistic upper bounds on the spectral radius of an associated non-backtracking matrix B. The two-sided bounds can be applied to the centered adjacency matrix of sparse inhomogeneous Erd˝os-Rényi bipartite graphs for a wide range of sparsity, down to criticality. In particular, for Erd˝os-Rényi bipartite graphs G(n,m, p) with p = ω(log n)/n, and m/n→ y ∈ (0,1), our sharp bounds imply that there are no outliers outside the support of the Marˇcenko-Pastur law almost surely. This result extends the Bai-Yin theorem to sparse rectangular random matrices. 
    more » « less
  3. null (Ed.)
    In the non-negative matrix factorization (NMF) problem, the input is an m×n matrix M with non-negative entries and the goal is to factorize it as M ≈ AW. The m × k matrix A and the k × n matrix W are both constrained to have non-negative entries. This is in contrast to singular value decomposition, where the matrices A and W can have negative entries but must satisfy the orthogonality constraint: the columns of A are orthogonal and the rows of W are also orthogonal. The orthogonal non-negative matrix factorization (ONMF) problem imposes both the non-negativity and the orthogonality constraints, and previous work showed that it leads to better performances than NMF on many clustering tasks. We give the first constant-factor approximation algorithm for ONMF when one or both of A and W are subject to the orthogonality constraint. We also show an interesting connection to the correlation clustering problem on bipartite graphs. Our experiments on synthetic and real-world data show that our algorithm achieves similar or smaller errors compared to previous ONMF algorithms while ensuring perfect orthogonality (many previous algorithms do not satisfy the hard orthogonality constraint). 
    more » « less
  4. Mathelier, Anthony (Ed.)
    Abstract   Biclustering is a generalization of clustering used to identify simultaneous grouping patterns in observations (rows) and features (columns) of a data matrix. Recently, the biclustering task has been formulated as a convex optimization problem. While this convex recasting of the problem has attractive properties, existing algorithms do not scale well. To address this problem and make convex biclustering a practical tool for analyzing larger data, we propose an implementation of fast convex biclustering called COBRAC to reduce the computing time by iteratively compressing problem size along the solution path. We apply COBRAC to several gene expression datasets to demonstrate its effectiveness and efficiency. Besides the standalone version for COBRAC, we also developed a related online web server for online calculation and visualization of the downloadable interactive results. Availability The source code and test data are available at https://github.com/haidyi/cvxbiclustr or https://zenodo.org/record/4620218. The web server is available at https://cvxbiclustr.ericchi.com. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  5. We address the problem of high-rank matrix completion with side information. In contrast to existing work dealing with side information, which assume that the data matrix is low-rank, we consider the more general scenario where the columns of the data matrix are drawn from a union of low-dimensional subspaces, which can lead to a high rank matrix. Our goal is to complete the matrix while taking advantage of the side information. To do so, we use the self-expressive property of the data, searching for a sparse representation of each column of matrix as a combination of a few other columns. More specifically, we propose a factorization of the data matrix as the product of side information matrices with an unknown interaction matrix, under which each column of the data matrix can be reconstructed using a sparse combination of other columns. As our proposed optimization, searching for missing entries and sparse coefficients, is non-convex and NP-hard, we propose a lifting framework, where we couple sparse coefficients and missing values and define an equivalent optimization that is amenable to convex relaxation. We also propose a fast implementation of our convex framework using a Linearized Alternating Direction Method. By extensive experiments on both synthetic and real data, and, in particular, by studying the problem of multi-label learning, we demonstrate that our method outperforms existing techniques in both low-rank and high-rank data regimes. 
    more » « less