Abstract Iron is essential to life, but surprisingly little is known about how iron is managed in nonvertebrate animals. In mammals, the well‐characterizedtransferrinsbind iron and are involved in iron transport or immunity, whereas other members of thetransferrinfamily do not have a role in iron homeostasis. In insects, the functions oftransferrinsare still poorly understood. The goals of this project were to identify thetransferringenes in a diverse set of insect species, resolve the evolutionary relationships among these genes, and predict which of thetransferrinsare likely to have a role in iron homeostasis. Our phylogenetic analysis oftransferrinsfrom 16 orders of insects and two orders of noninsect hexapods demonstrated that there are four orthologous groups of insecttransferrins. Our analysis suggests thattransferrin 2arose prior to the origin of insects, andtransferrins 1,3, and4arose early in insect evolution. Primary sequence analysis of each of the insecttransferrinswas used to predict signal peptides, carboxyl‐terminal transmembrane regions, GPI‐anchors, and iron binding. Based on this analysis, we suggest thattransferrins 2,3, and4are unlikely to play a major role in iron homeostasis. In contrast, thetransferrin 1orthologs are predicted to be secreted, soluble, iron‐binding proteins. We conclude thattransferrin 1orthologs are the most likely to play an important role in iron homeostasis. Interestingly, it appears that the louse, aphid, and thrips lineages have lost thetransferrin 1gene and, thus, have evolved to manage iron withouttransferrins.
more »
« less
Point Mutations in TbpA Abrogate Human Transferrin Binding in Neisseria gonorrhoeae
ABSTRACT TonB-dependent transporters (TDTs) are essential proteins for metal acquisition, an important step in the growth and pathogenesis of many pathogens, including Neisseria gonorrhoeae , the causative agent of gonorrhea. There is currently no available vaccine for gonorrhea; TDTs are being investigated as vaccine candidates because they are highly conserved and expressed in vivo . Transferrin binding protein A (TbpA) is an essential virulence factor in the initiation of experimental infection in human males and functions by acquiring iron upon binding to host transferrin (human transferrin [hTf]). The loop 3 helix (L3H) is a helix finger that inserts into the hTf C-lobe and is required for hTf binding and subsequent iron acquisition. This study identified and characterized the first TbpA single-point substitutions resulting in significantly decreased hTf binding and iron acquisition, suggesting that the helix structure is more important than charge for hTf binding and utilization. The tbpA D355P Δ tbpB and tbpA A356P Δ tbpB mutants demonstrated significantly reduced hTf binding and impaired iron uptake from Fe-loaded hTf; however, only the tbpA A356P Δ tbpB mutant was able to grow when hTf was the sole source of iron. The expression of tbpB was able to restore function in all tbpA mutants. These results implicate both D355 and A356 in the key binding, extraction, and uptake functions of gonococcal TbpA.
more »
« less
- PAR ID:
- 10398100
- Editor(s):
- Bäumler, Andreas J.
- Date Published:
- Journal Name:
- Infection and Immunity
- Volume:
- 90
- Issue:
- 11
- ISSN:
- 0019-9567
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ruby, Edward G. (Ed.)ABSTRACT Iron acquisition is essential for almost all living organisms. In certain environments, ferrous iron is the most prevalent form of this element. Feo is the most widespread system for ferrous iron uptake in bacteria and is critical for virulence in some species. The canonical architecture of Feo consists of a large transmembrane nucleoside triphosphatase (NTPase) protein, FeoB, and two accessory cytoplasmic proteins, FeoA and FeoC. The role of the latter components and the mechanism by which Feo orchestrates iron transport are unclear. In this study, we conducted a comparative analysis of Feo protein sequences to gain insight into the evolutionary history of this transporter. We identified instances of how horizontal gene transfer contributed to the evolution of Feo. Also, we found that FeoC, while absent in most lineages, is largely present in the Gammaproteobacteria group, although its sequence is poorly conserved. We propose that FeoC, which may couple FeoB NTPase activity with pore opening, was an ancestral element that has been dispensed with through mutations in FeoA and FeoB in some lineages. We provide experimental evidence supporting this hypothesis by isolating and characterizing FeoC-independent mutants of the Vibrio cholerae Feo system. Also, we confirmed that the closely related species Shewanella oneidensis does not require FeoC; thus, Vibrio FeoC sequences may resemble transitional forms on an evolutionary pathway toward FeoC-independent transporters. Finally, by combining data from our bioinformatic analyses with this experimental evidence, we propose an evolutionary model for the Feo system in bacteria. IMPORTANCE Feo, a ferrous iron transport system composed of three proteins (FeoA, -B, and -C), is the most prevalent bacterial iron transporter. It plays an important role in iron acquisition in low-oxygen environments and some host-pathogen interactions. The large transmembrane protein FeoB provides the channel for the transport of iron into the bacterial cell, but the functions of the two small, required accessory proteins FeoA and FeoC are not well understood. Analysis of the evolution of this transporter shows that FeoC is poorly conserved and has been lost from many bacterial lineages. Experimental evidence indicates that FeoC may have different functions in different species that retain this protein, and the loss of FeoC is promoted by mutations in FeoA or by the fusion of FeoA and FeoB.more » « less
-
Transferrin, a central player in iron transport, has been recognized not only for its role in binding iron but also for its interaction with other metals, including titanium. This study employs solid-state nanopores to investigate the binding of titanium ions [Ti(IV)] to transferrin in a single-molecule and label-free manner. We demonstrate the novel application of solid-state nanopores for single-molecule discrimination between apo-transferrin (metal-free) and Ti(IV)-transferrin. Despite their similar sizes, Ti(IV)-transferrin exhibits a reduced current drop, attributed to differences in translocation times and filter characteristics. Single-molecule analysis reveals Ti(IV)-transferrin’s enhanced stability and faster translocations due to its distinct conformational flexibility compared to apo-transferrin. Furthermore, our study showcases solid-state nanopores as real-time monitors of biochemical reactions, tracking the gradual conversion of apo-transferrin to Ti(IV)-transferrin upon the addition of titanium citrate. This work offers insights into Ti(IV) binding to transferrin, promising applications for single-molecule analysis and expanding our comprehension of metal–protein interactions at the molecular level.more » « less
-
Abstract Transferrins function in iron sequestration and iron transport by binding iron tightly and reversibly. Vertebrate transferrins coordinate iron through interactions with two tyrosines, an aspartate, a histidine, and a carbonate anion, and conformational changes that occur upon iron binding and release have been described. Much less is known about the structure and functions of insect transferrin‐1 (Tsf1), which is present in hemolymph and influences iron homeostasis mostly by unknown mechanisms. Amino acid sequence and biochemical analyses have suggested that iron coordination by Tsf1 differs from that of the vertebrate transferrins. Here we report the first crystal structure (2.05 Å resolution) of an insect transferrin.Manduca sexta(MsTsf1) in the holo form exhibits a bilobal fold similar to that of vertebrate transferrins, but its carboxyl‐lobe adopts a novel orientation and contacts with the amino‐lobe. The structure revealed coordination of a single Fe3+ion in the amino‐lobe through Tyr90, Tyr204, and two carbonate anions. One carbonate anion is buried near the ferric ion and is coordinated by four residues, whereas the other carbonate anion is solvent exposed and coordinated by Asn121. Notably, these residues are highly conserved in Tsf1 orthologs. Docking analysis suggested that the solvent exposed carbonate position is capable of binding alternative anions. These findings provide a structural basis for understanding Tsf1 function in iron sequestration and transport in insects as well as insight into the similarities and differences in iron homeostasis between insects and humans.more » « less
-
Abstract RAS GTPases are proto‐oncoproteins that regulate cell growth, proliferation, and differentiation in response to extracellular signals. The signaling functions of RAS, and other small GTPases, are dependent on their ability to cycle between GDP‐bound and GTP‐bound states. Structural analyses suggest that GTP hydrolysis catalyzed by HRAS can be regulated by an allosteric site located between helices 3, 4, and loop 7. Here we explore the relationship between intrinsic GTP hydrolysis on HRAS and the position of helix 3 and loop 7 through manipulation of the allosteric site, showing that the two sites are functionally connected. We generated several hydrophobic mutations in the allosteric site of HRAS to promote shifts in helix 3 relative to helix 4. By combining crystallography and enzymology to study these mutants, we show that closure of the allosteric site correlates with increased hydrolysis of GTP on HRAS in solution. Interestingly, binding to the RAS binding domain of RAF kinase (RAF‐RBD) inhibits GTP hydrolysis in the mutants. This behavior may be representative of a cluster of mutations found in human tumors, which potentially cooperate with RAF complex formation to stabilize the GTP‐bound state of RAS.more » « less