skip to main content

Title: A Competitive Algorithm for Throughput Maximization on Identical Machines
This paper considers the basic problem of scheduling jobs online with preemption to maximize the number of jobs completed by their deadline on m identical machines. The main result is an O(1) competitive deterministic algorithm for any number of machines 𝑚>1.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Aardal, Karen; Sanita, Laura
Date Published:
Journal Name:
Integer Programming and Combinatorial Optimization - 23rd International Conference, {IPCO}
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, Iyad ; Selesnick, Ivan ; Picone, Joseph (Ed.)
    The goal of this work was to design a low-cost computing facility that can support the development of an open source digital pathology corpus containing 1M images [1]. A single image from a clinical-grade digital pathology scanner can range in size from hundreds of megabytes to five gigabytes. A 1M image database requires over a petabyte (PB) of disk space. To do meaningful work in this problem space requires a significant allocation of computing resources. The improvements and expansions to our HPC (highperformance computing) cluster, known as Neuronix [2], required to support working with digital pathology fall into two broad categories: computation and storage. To handle the increased computational burden and increase job throughput, we are using Slurm [3] as our scheduler and resource manager. For storage, we have designed and implemented a multi-layer filesystem architecture to distribute a filesystem across multiple machines. These enhancements, which are entirely based on open source software, have extended the capabilities of our cluster and increased its cost-effectiveness. Slurm has numerous features that allow it to generalize to a number of different scenarios. Among the most notable is its support for GPU (graphics processing unit) scheduling. GPUs can offer a tremendous performance increase in machine learning applications [4] and Slurm’s built-in mechanisms for handling them was a key factor in making this choice. Slurm has a general resource (GRES) mechanism that can be used to configure and enable support for resources beyond the ones provided by the traditional HPC scheduler (e.g. memory, wall-clock time), and GPUs are among the GRES types that can be supported by Slurm [5]. In addition to being able to track resources, Slurm does strict enforcement of resource allocation. This becomes very important as the computational demands of the jobs increase, so that they have all the resources they need, and that they don’t take resources from other jobs. It is a common practice among GPU-enabled frameworks to query the CUDA runtime library/drivers and iterate over the list of GPUs, attempting to establish a context on all of them. Slurm is able to affect the hardware discovery process of these jobs, which enables a number of these jobs to run alongside each other, even if the GPUs are in exclusive-process mode. To store large quantities of digital pathology slides, we developed a robust, extensible distributed storage solution. We utilized a number of open source tools to create a single filesystem, which can be mounted by any machine on the network. At the lowest layer of abstraction are the hard drives, which were split into 4 60-disk chassis, using 8TB drives. To support these disks, we have two server units, each equipped with Intel Xeon CPUs and 128GB of RAM. At the filesystem level, we have implemented a multi-layer solution that: (1) connects the disks together into a single filesystem/mountpoint using the ZFS (Zettabyte File System) [6], and (2) connects filesystems on multiple machines together to form a single mountpoint using Gluster [7]. ZFS, initially developed by Sun Microsystems, provides disk-level awareness and a filesystem which takes advantage of that awareness to provide fault tolerance. At the filesystem level, ZFS protects against data corruption and the infamous RAID write-hole bug by implementing a journaling scheme (the ZFS intent log, or ZIL) and copy-on-write functionality. Each machine (1 controller + 2 disk chassis) has its own separate ZFS filesystem. Gluster, essentially a meta-filesystem, takes each of these, and provides the means to connect them together over the network and using distributed (similar to RAID 0 but without striping individual files), and mirrored (similar to RAID 1) configurations [8]. By implementing these improvements, it has been possible to expand the storage and computational power of the Neuronix cluster arbitrarily to support the most computationally-intensive endeavors by scaling horizontally. We have greatly improved the scalability of the cluster while maintaining its excellent price/performance ratio [1]. 
    more » « less
  2. We consider a distributed server system consisting of a large number of servers, each with limited capacity on multiple resources (CPU, memory, etc.). Jobs with different rewards arrive over time and require certain amounts of resources for the duration of their service. When a job arrives, the system must decide whether to admit it or reject it, and if admitted, in which server to schedule it. The objective is to maximize the expected total reward received by the system. This problem is motivated by control of cloud computing clusters, in which jobs are requests for virtual machines (VMs) or containers that reserve resources for various services, and rewards represent service priority of requests or price paid per time unit of service. We study this problem in an asymptotic regime where the number of servers and jobs’ arrival rates scale by a factor L, as L becomes large. We propose a resource reservation policy that asymptotically achieves at least 1/2, and under certain monotone property on jobs’ rewards and resources, at least [Formula: see text] of the optimal expected reward. The policy automatically scales the number of VM slots for each job type as the demand changes and decides in which servers the slots should be created in advance, without the knowledge of traffic rates. 
    more » « less
  3. The efficient production planning of Additively Manufactured (AM) parts is a key point for industry-scale adoption of AM. This study develops an AM-based production plan for the case of manufacturing a significant number of parts with different shapes and sizes by multiple machines with the ultimate purpose of reducing the cycle time. The proposed AM-based production planning includes three main steps: (1) determination of build orientation; (2) 2D packing of parts within the limited workspace of AM machines; and (3) scheduling parts on multiple AM machines. For making decision about build orientation, two main policies are considered: (1) laying policy in which the focus is on reducing the height of parts; and (2) standing policy which aims at minimizing the projection area on the tray to reduce the number of jobs. A heuristic algorithm is suggested to solve 2D packing and scheduling problems. A numerical example is conducted to identify which policy is more preferred in terms of cycle time. As a result, the standing policy is more preferred than the laying policy as the number of parts increases. In the case of testing 3,000 parts, the cycle time of standing policy is about 6% shorter than laying policy. 
    more » « less
  4. null (Ed.)
    We consider the problem of makespan minimization on unrelated machines when job sizes are stochastic. The goal is to find a fixed assignment of jobs to machines, to minimize the expected value of the maximum load over all the machines. For the identical-machines special case when the size of a job is the same across all machines, a constant-factor approximation algorithm has long been known. Our main result is the first constant-factor approximation algorithm for the general case of unrelated machines. This is achieved by (i) formulating a lower bound using an exponential-size linear program that is efficiently computable and (ii) rounding this linear program while satisfying only a specific subset of the constraints that still suffice to bound the expected makespan. We also consider two generalizations. The first is the budgeted makespan minimization problem, where the goal is to minimize the expected makespan subject to scheduling a target number (or reward) of jobs. We extend our main result to obtain a constant-factor approximation algorithm for this problem. The second problem involves q-norm objectives, where we want to minimize the expected q-norm of the machine loads. Here we give an [Formula: see text]-approximation algorithm, which is a constant-factor approximation for any fixed q. 
    more » « less
  5. null (Ed.)
    Uncertainty is an omnipresent issue in real-world optimization problems. This paper studies a fundamental problem concerning uncertainty, known as the β-robust scheduling problem. Given a set of identical machines and a set of jobs whose processing times follow a normal distribution, the goal is to assign jobs to machines such that the probability that all the jobs are completed by a given common due date is maximized. We give the first systematic study on the complexity and algorithms for this problem. A strong negative result is shown by ruling out the existence of any polynomial-time algorithm with a constant approximation ratio for the general problem unless P=NP. On the positive side, we provide the first FPT-AS (fixed parameter tractable approximation scheme) parameterized by the number of different kinds of jobs, which is a common parameter in scheduling problems. It returns a solution arbitrarily close to the optimal solution, provided that the job processing times follow a few different types of distributions. We further complement the theoretical results by implementing our algorithm. The experiments demonstrate that by choosing an appropriate approximation ratio, the algorithm can efficiently compute a near-optimal solution. 
    more » « less