skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neural-Network-Optimized Degree-Specific Weights for LDPC MinSum Decoding
Neural Normalized MinSum (N-NMS) decoding delivers better frame error rate (FER) performance on linear block codes than conventional Normalized MinSum (NMS) by assigning dynamic multiplicative weights to each check-to-variable node message in each iteration. Previous N-NMS efforts primarily investigated short block codes (N < 1000), because the number of N-NMS parameters required to be trained scales proportionately to the number of edges in the parity check matrix and the number of iterations. This imposes an impractical memory requirement for conventional tools such as Pytorch and Tensorflow to create the neural network and store gradients. This paper provides efficient methods of training the parameters of N-NMS decoders that support longer block lengths. Specifically, this paper introduces a family of Neural 2-dimensional Normalized (N-2D-NMS) decoders with various reduced parameter sets and shows how performance varies with the parameter set selected. The N-2D-NMS decoders share weights with respect to check node and/or variable node degree. Simulation results justify a reduced parameter set, showing that the trained weights of N- NMS have a smaller value for the neurons corresponding to larger check/variable node degree. Further simulation results on a (3096,1032) Protograph-Based Raptor-Like (PBRL) code show that the N-2D-NMS decoder can achieve the same FER as N- NMS while also providing at least a 99.7% parameter reduction. Furthermore, the N-2D-NMS decoder for the (16200,7200) DVBS- 2 standard LDPC code shows a lower error floor than belief propagation. Finally, this paper proposes a hybrid decoder training structure that utilizes a neural network which combines a feedforward module with a recurrent module. The decoding performance and parameter reduction of the hybrid training depends on the length of recurrent module of the neural network.  more » « less
Award ID(s):
1911166
PAR ID:
10398468
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 11th International Symposium on Topics in Coding (ISTC)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Neural Normalized MinSum (N-NMS) decoding delivers better frame error rate (FER) performance on linear block codes than conventional normalized MinSum (NMS) by assigning dynamic multiplicative weights to each check-to-variable message in each iteration. Previous N-NMS efforts have primarily investigated short-length block codes (N < 1000), because the number of N-NMS parameters to be trained is proportional to the number of edges in the parity check matrix and the number of iterations, which imposes am impractical memory requirement when Pytorch or Tensorflow is used for training. This paper provides efficient approaches to training parameters of N-NMS that support N-NMS for longer block lengths. Specifically, this paper introduces a family of neural 2-dimensional normalized (N-2D-NMS) decoders with with various reduced parameter sets and shows how performance varies with the parameter set selected. The N-2D-NMS decoders share weights with respect to check node and/or variable node degree. Simulation results justify this approach, showing that the trained weights of N-NMS have a strong correlation to the check node degree, variable node degree, and iteration number. Further simulation results on the (3096,1032) protograph-based raptor-like (PBRL) code show that N-2D-NMS decoder can achieve the same FER as N-NMS with significantly fewer parameters required. The N-2D-NMS decoder for a (16200,7200) DVBS-2 standard LDPC code shows a lower error floor than belief propagation. Finally, a hybrid decoding structure combining a feedforward structure with a recurrent structure is proposed in this paper. The hybrid structure shows similar decoding performance to full feedforward structure, but requires significantly fewer parameters. 
    more » « less
  2. Recently, neural networks have improved MinSum message-passing decoders for low-density parity-check (LDPC) codes by multiplying or adding weights to the messages, where the weights are determined by a neural network. The neural network complexity to determine distinct weights for each edge is high, often limiting the application to relatively short LDPC codes. Furthermore, storing separate weights for every edge and every iteration can be a burden for hardware implementations. To reduce neural network complexity and storage requirements, this paper proposes a family of weight-sharing schemes that use the same weight for edges that have the same check node degree and/or variable node degree. Our simulation results show that node-degree-based weight-sharing can deliver the same performance requiring distinct weights for each node. This paper also combines these degree-specific neural weights with a reconstruction-computation-quantization (RCQ) decoder to produce a weighted RCQ (W-RCQ) decoder. The W-RCQ decoder with node-degree-based weight sharing has a reduced hardware requirement compared with the original RCQ decoder. As an additional contribution, this paper identifies and resolves a gradient explosion issue that can arise when training neural LDPC decoders. 
    more » « less
  3. The Consultative Committee for Space Data Systems (CCSDS) 141.11-O-1 Line Product Code (LPC) provides a rare opportunity to compare maximum-likelihood decoding and message passing. The LPC considered in this paper is intended to serve as the inner code in conjunction with a (255,239) Reed Solomon (RS) code whose symbols are bytes of data. This paper represents the 141.11-O-1 LPC as a bipartite graph and uses that graph to formulate both maximum likelihood (ML) and message passing algorithms. ML decoding must, of course, have the best frame error rate (FER) performance. However, a fixed point implementation of a Neural-Normalized MinSum (N-NMS) message passing decoder closely approaches ML performance with a significantly lower complexity. 
    more » « less
  4. In this paper, we propose a novel message-passing decoding approach that leverages the degeneracy of quantum low-density parity-check codes to enhance decoding performance, eliminating the need for serial scheduling or post-processing. Our focus is on two-block Calderbank-Shor-Steane (CSS) codes, which are composed of symmetric stabilizers that hinder the performance of conventional iterative decoders with uniform update rules. Specifically, our analysis shows that, under the isolation assumption, the min-sum decoder fails to converge when constant-weight errors are applied to symmetric stabilizers, as variable-to-check messages oscillate in every iteration. To address this, we introduce a decoding technique that exploits this oscillatory property by applying distinct update rules: variable nodes in one block utilize messages from previous iterations, while those in the other block are updated conventionally. Logical error-rate results demonstrate that the proposed decoder significantly outperforms the normalized min-sum decoder and achieves competitive performance with belief propagation enhanced by order-zero ordered statistics decoding, all while maintaining linear complexity in the code’s block length. 
    more » « less
  5. Non-uniform message quantization techniques such as reconstruction-computation-quantization (RCQ) improve error-correction performance and decrease hardware complexity of low-density parity-check (LDPC) decoders that use a flooding schedule. Layered MinSum RCQ (L-msRCQ) enables message quantization to be utilized for layered decoders and irregular LDPC codes. We investigate field-programmable gate array (FPGA) implementations of L-msRCQ decoders. Three design methods for message quantization are presented, which we name the Lookup, Broadcast, and Dribble methods. The decoding performance and hardware complexity of these schemes are compared to a layered offset MinSum (OMS) decoder. Simulation results on a (16384, 8192) protograph-based raptor-like (PBRL) LDPC code show that a 4-bit L-msRCQ decoder using the Broadcast method can achieve a 0.03 dB improvement in error-correction performance while using 12% fewer registers than the OMS decoder. A Broadcast-based 3-bit L-msRCQ decoder uses 15% fewer lookup tables, 18% fewer registers, and 13% fewer routed nets than the OMS decoder, but results in a 0.09 dB loss in performance. 
    more » « less