The ever-increasing needs of supporting real-time applications have spurred a considerable number of studies on minimizing Age-of-Information (AoI), a new metric characterizing the data freshness of the system. This work revisits and significantly strengthens the seminal results of Sun et al. on the following fronts: (i) The optimal waiting policy is generalized from the 1-way delay to the 2-way delay setting; (ii) A new way of computing the optimal policy with quadratic convergence rate, an order-of-magnitude improvement over the state-of-the-art bisection methods; and (iii) A new low-complexity adaptive online algorithm that provably converges to the optimal policy without knowing the exact delay distribution, a sharp departure from the existing AoI algorithms. Contribution (iii) is especially important in practice since the delay distribution can sometimes be hard to know in advance and may change over time. Simulation results in various settings are consistent with the theoretic findings.
more »
« less
Distribution-Oblivious Online Algorithms for Age-of-Information Penalty Minimization
The ever-increasing needs of supporting real-time applications have spurred new studies on minimizing Age-of-Information (AoI), a novel metric characterizing the data freshness of the system. This work studies the single-queue information update system and strengthens the seminal results of Sun et al. on the following fronts: (i) When designing the optimal offline schemes with full knowledge of the delay distributions, a new fixed-point-based method is proposed with quadratic convergence rate, an order-of-magnitude improvement over the state-of-the-art; (ii) When the distributional knowledge is unavailable (which is the norm in practice), two new low-complexity online algorithms are proposed, which provably attain the optimal average AoI penalty; and (iii) the online schemes also admit a modular architecture, which allows the designer to upgrade certain components to handle additional practical challenges. Two such upgrades are proposed for the situations: (iii.1) The AoI penalty function is also unknown and must be estimated on the fly, and (iii.2) the unknown delay distribution is Markovian instead of i.i.d. The performance of our schemes is either provably optimal or within 3% of the omniscient optimal offline solutions in all simulation scenarios.
more »
« less
- PAR ID:
- 10398482
- Date Published:
- Journal Name:
- IEEE/ACM Transactions on Networking
- ISSN:
- 1063-6692
- Page Range / eLocation ID:
- 1 to 16
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
One main objective of ultra-low-latency communications is to minimize the data staleness at the receivers, recently characterized by a metric called Age-of-Information (AoI). While the question of when to send the next update packet has been the central subject of AoI minimization, each update packet also incurs the cost of transmission that needs to be jointly considered in a practical design. With the exponential growth of interconnected devices and the increasing risk of excessive resource consumption in mind, this work derives an optimal joint cost-and-AoI minimization solution for multiple coexisting source-destination (S-D) pairs. The results admit a new AoI-market-price-based interpretation and are applicable to the setting of (a) general heterogeneous AoI penalty functions and Markov delay distributions for each S-D pair, and (b) a general network cost function of aggregate throughput of all S-D pairs. Extensive simulation is used to demonstrate the superior performance of the proposed scheme.more » « less
-
We consider a real-time monitoring system where a source node (with energy limitations) aims to keep the information status at a destination node as fresh as possible by scheduling status update transmissions over a set of channels. The freshness of information at the destination node is measured in terms of the Age of Information (AoI) metric. In this setting, a natural tradeoff exists between the transmission cost (or equivalently, energy consumption) of the source and the achievable AoI performance at the destination. This tradeoff has been optimized in the existing literature under the assumption of having a complete knowledge of the channel statistics. In this work, we develop online learning-based algorithms with finite-time guarantees that optimize this tradeoff in the practical scenario where the channel statistics are unknown to the scheduler. In particular, when the channel statistics are known, the optimal scheduling policy is first proven to have a threshold-based structure with respect to the value of AoI (i.e., it is optimal to drop updates when the AoI value is below some threshold). This key insight was then utilized to develop the proposed learning algorithms that surprisingly achieve an order-optimal regret (i.e., O(1)) with respect to the time horizon length.more » « less
-
The Age-of-Information (AoI) has recently been proposed as an important metric for investigating the timeliness performance in information-update systems. Prior studies on AoI optimization often consider a Push model, which is concerned about when and how to "push" (i.e., generate and transmit) the updated information to the user. In stark contrast, in this paper we introduce a new Pull model, which is more relevant for certain applications (such as the real-time stock quotes service), where a user sends requests to the servers to proactively "pull" the information of interest. Moreover, we propose to employ request replication to reduce the AoI. Interestingly, we find that under this new Pull model, replication schemes capture a novel tradeoff between different levels of information freshness and different response times across the servers, which can be exploited to minimize the expected AoI at the user's side. Specifically, assuming Poisson updating process at the servers and exponentially distributed response time, we derive a closed-form formula for computing the expected AoI and obtain the optimal number of responses to wait for to minimize the expected AoI. Finally, we conduct numerical simulations to elucidate our theoretical results. Our findings show that waiting for more than one response can significantly reduce the AoI in most scenarios.more » « less
-
null (Ed.)The ubiquitous usage of communication networks in modern sensing and control applications has kindled new interests on the timing-based coordination between sensors and controllers, i.e., how to use the “waiting time” to improve the system performance. Contrary to the common belief that a zero-wait policy is always optimal, Sun et al. showed that a controller can strictly improve the data freshness, the so-called Age-of-Information (AoI), by postponing transmission in order to lengthen the duration of staying in a good state. The optimal waiting policy for the sensor side was later characterized in the context of remote estimation. Instead of focusing on the sensor and controller sides separately, this work develops the optimal joint sensor/controller waiting policy in a Wiener-process system. The results can be viewed as strict generalization of the above two important results in the sense that not only do we consider joint sensor/controller designs (as opposed to sensor-only or controller only schemes), but we also assume random delay in both the forward and feedback directions (as opposed to random delay in only one direction). In addition to provable optimality, extensive simulation is used to verify the performance of the proposed scheme in various settings.more » « less
An official website of the United States government

