skip to main content

Title: Functional Structural Equation Model

In this article, we introduce a functional structural equation model for estimating directional relations from multivariate functional data. We decouple the estimation into two major steps: directional order determination and selection through sparse functional regression. We first propose a score function at the linear operator level, and show that its minimization can recover the true directional order when the relation between each function and its parental functions is nonlinear. We then develop a sparse functional additive regression, where both the response and the multivariate predictors are functions and the regression relation is additive and nonlinear. We also propose strategies to speed up the computation and scale up our method. In theory, we establish the consistencies of order determination, sparse functional additive regression, and directed acyclic graph estimation, while allowing both the dimension of the Karhunen–Loéve expansion coefficients and the number of random functions to diverge with the sample size. We illustrate the efficacy of our method through simulations, and an application to brain effective connectivity analysis.

more » « less
Award ID(s):
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of the Royal Statistical Society Series B: Statistical Methodology
Medium: X Size: p. 600-629
p. 600-629
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This paper is motivated by studying differential brain activities to multiple experimental condition presentations in intracranial electroencephalography (iEEG) experiments. Contrasting effects of experimental conditions are often zero in most regions and nonzero in some local regions, yielding locally sparse functions. Such studies are essentially a function-on-scalar regression problem, with interest being focused not only on estimating nonparametric functions but also on recovering the function supports. We propose a weighted group bridge approach for simultaneous function estimation and support recovery in function-on-scalar mixed effect models, while accounting for heterogeneity present in functional data. We use B-splines to transform sparsity of functions to its sparse vector counterpart of increasing dimension, and propose a fast nonconvex optimization algorithm using nested alternative direction method of multipliers (ADMM) for estimation. Large sample properties are established. In particular, we show that the estimated coefficient functions are rate optimal in the minimax sense under the L2 norm and resemble a phase transition phenomenon. For support estimation, we derive a convergence rate under the norm that leads to a selection consistency property under δ-sparsity, and obtain a result under strict sparsity using a simple sufficient regularity condition. An adjusted extended Bayesian information criterion is proposed for parameter tuning. The developed method is illustrated through simulations and an application to a novel iEEG data set to study multisensory integration.

    more » « less
  2. In this paper, we consider fitting a flexible and interpretable additive regression model in a data‐rich setting. We wish to avoid pre‐specifying the functional form of the conditional association between each covariate and the response, while still retaining interpretability of the fitted functions. A number of recent proposals in the literature for nonparametric additive modeling aredata adaptive, in the sense that they can adjust the level of flexibility in the functional fits to the data at hand. For instance, thesparse additive modelmakes it possible to adaptively determine which features should be included in the fitted model, thesparse partially linear additive modelallows each feature in the fitted model to take either a linear or a nonlinear functional form, and the recentfused lasso additive modelandadditive trend filteringproposals allow the knots in each nonlinear function fit to be selected from the data. In this paper, we combine the strengths of each of these recent proposals into a single proposal that uses the data to determine which features to include in the model, whether to model each feature linearly or nonlinearly, and what form to use for the nonlinear functions. We establish connections between our approach and recent proposals from the literature, and we demonstrate its strengths in a simulation study.

    more » « less
  3. Summary

    We propose a multivariate sparse group lasso variable selection and estimation method for data with high-dimensional predictors as well as high-dimensional response variables. The method is carried out through a penalized multivariate multiple linear regression model with an arbitrary group structure for the regression coefficient matrix. It suits many biology studies well in detecting associations between multiple traits and multiple predictors, with each trait and each predictor embedded in some biological functional groups such as genes, pathways or brain regions. The method is able to effectively remove unimportant groups as well as unimportant individual coefficients within important groups, particularly for large p small n problems, and is flexible in handling various complex group structures such as overlapping or nested or multilevel hierarchical structures. The method is evaluated through extensive simulations with comparisons to the conventional lasso and group lasso methods, and is applied to an eQTL association study.

    more » « less
  4. Summary

    Ensembles of decision trees are a useful tool for obtaining flexible estimates of regression functions. Examples of these methods include gradient-boosted decision trees, random forests and Bayesian classification and regression trees. Two potential shortcomings of tree ensembles are their lack of smoothness and their vulnerability to the curse of dimensionality. We show that these issues can be overcome by instead considering sparsity inducing soft decision trees in which the decisions are treated as probabilistic. We implement this in the context of the Bayesian additive regression trees framework and illustrate its promising performance through testing on benchmark data sets. We provide strong theoretical support for our methodology by showing that the posterior distribution concentrates at the minimax rate (up to a logarithmic factor) for sparse functions and functions with additive structures in the high dimensional regime where the dimensionality of the covariate space is allowed to grow nearly exponentially in the sample size. Our method also adapts to the unknown smoothness and sparsity levels, and can be implemented by making minimal modifications to existing Bayesian additive regression tree algorithms.

    more » « less
  5. Motivated by mobile devices that record data at a high frequency, we propose a new methodological framework for analyzing a semi-parametric regression model that allow us to study a nonlinear relationship between a scalar response and multiple functional predictors in the presence of scalar covariates. Utilizing functional principal component analysis (FPCA) and the least-squares kernel machine method (LSKM), we are able to substantially extend the framework of semi-parametric regression models of scalar responses on scalar predictors by allowing multiple functional predictors to enter the nonlinear model. Regularization is established for feature selection in the setting of reproducing kernel Hilbert spaces. Our method performs simultaneously model fitting and variable selection on functional features. For the implementation, we propose an effective algorithm to solve related optimization problems in that iterations take place between both linear mixed-effects models and a variable selection method (e.g., sparse group lasso). We show algorithmic convergence results and theoretical guarantees for the proposed methodology. We illustrate its performance through simulation experiments and an analysis of accelerometer data. 
    more » « less