skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Functional Structural Equation Model
Abstract In this article, we introduce a functional structural equation model for estimating directional relations from multivariate functional data. We decouple the estimation into two major steps: directional order determination and selection through sparse functional regression. We first propose a score function at the linear operator level, and show that its minimization can recover the true directional order when the relation between each function and its parental functions is nonlinear. We then develop a sparse functional additive regression, where both the response and the multivariate predictors are functions and the regression relation is additive and nonlinear. We also propose strategies to speed up the computation and scale up our method. In theory, we establish the consistencies of order determination, sparse functional additive regression, and directed acyclic graph estimation, while allowing both the dimension of the Karhunen–Loéve expansion coefficients and the number of random functions to diverge with the sample size. We illustrate the efficacy of our method through simulations, and an application to brain effective connectivity analysis.  more » « less
Award ID(s):
2102227
PAR ID:
10398645
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of the Royal Statistical Society Series B: Statistical Methodology
Volume:
84
Issue:
2
ISSN:
1369-7412
Format(s):
Medium: X Size: p. 600-629
Size(s):
p. 600-629
Sponsoring Org:
National Science Foundation
More Like this
  1. Multivariate adaptive regression splines (MARS) is a popular method for nonparametric regression introduced by Friedman in 1991. MARS fits sim- ple nonlinear and non-additive functions to regression data. We propose and study a natural lasso variant of the MARS method. Our method is based on least squares estimation over a convex class of functions obtained by con- sidering infinite-dimensional linear combinations of functions in the MARS basis and imposing a variation based complexity constraint. Our estimator can be computed via finite-dimensional convex optimization, although it is defined as a solution to an infinite-dimensional optimization problem. Under a few standard design assumptions, we prove that our estimator achieves a rate of convergence that depends only logarithmically on dimension and thus avoids the usual curse of dimensionality to some extent. We also show that our method is naturally connected to nonparametric estimation techniques based on smoothness constraints. We implement our method with a cross- validation scheme for the selection of the involved tuning parameter and compare it to the usual MARS method in various simulation and real data settings. 
    more » « less
  2. Abstract This paper is motivated by studying differential brain activities to multiple experimental condition presentations in intracranial electroencephalography (iEEG) experiments. Contrasting effects of experimental conditions are often zero in most regions and nonzero in some local regions, yielding locally sparse functions. Such studies are essentially a function-on-scalar regression problem, with interest being focused not only on estimating nonparametric functions but also on recovering the function supports. We propose a weighted group bridge approach for simultaneous function estimation and support recovery in function-on-scalar mixed effect models, while accounting for heterogeneity present in functional data. We use B-splines to transform sparsity of functions to its sparse vector counterpart of increasing dimension, and propose a fast nonconvex optimization algorithm using nested alternative direction method of multipliers (ADMM) for estimation. Large sample properties are established. In particular, we show that the estimated coefficient functions are rate optimal in the minimax sense under the L2 norm and resemble a phase transition phenomenon. For support estimation, we derive a convergence rate under the norm that leads to a selection consistency property under δ-sparsity, and obtain a result under strict sparsity using a simple sufficient regularity condition. An adjusted extended Bayesian information criterion is proposed for parameter tuning. The developed method is illustrated through simulations and an application to a novel iEEG data set to study multisensory integration. 
    more » « less
  3. Summary Ensembles of decision trees are a useful tool for obtaining flexible estimates of regression functions. Examples of these methods include gradient-boosted decision trees, random forests and Bayesian classification and regression trees. Two potential shortcomings of tree ensembles are their lack of smoothness and their vulnerability to the curse of dimensionality. We show that these issues can be overcome by instead considering sparsity inducing soft decision trees in which the decisions are treated as probabilistic. We implement this in the context of the Bayesian additive regression trees framework and illustrate its promising performance through testing on benchmark data sets. We provide strong theoretical support for our methodology by showing that the posterior distribution concentrates at the minimax rate (up to a logarithmic factor) for sparse functions and functions with additive structures in the high dimensional regime where the dimensionality of the covariate space is allowed to grow nearly exponentially in the sample size. Our method also adapts to the unknown smoothness and sparsity levels, and can be implemented by making minimal modifications to existing Bayesian additive regression tree algorithms. 
    more » « less
  4. Motivated by mobile devices that record data at a high frequency, we propose a new methodological framework for analyzing a semi-parametric regression model that allow us to study a nonlinear relationship between a scalar response and multiple functional predictors in the presence of scalar covariates. Utilizing functional principal component analysis (FPCA) and the least-squares kernel machine method (LSKM), we are able to substantially extend the framework of semi-parametric regression models of scalar responses on scalar predictors by allowing multiple functional predictors to enter the nonlinear model. Regularization is established for feature selection in the setting of reproducing kernel Hilbert spaces. Our method performs simultaneously model fitting and variable selection on functional features. For the implementation, we propose an effective algorithm to solve related optimization problems in that iterations take place between both linear mixed-effects models and a variable selection method (e.g., sparse group lasso). We show algorithmic convergence results and theoretical guarantees for the proposed methodology. We illustrate its performance through simulation experiments and an analysis of accelerometer data. 
    more » « less
  5. Summary We consider forecasting a single time series using a large number of predictors in the presence of a possible nonlinear forecast function. Assuming that the predictors affect the response through the latent factors, we propose to first conduct factor analysis and then apply sufficient dimension reduction on the estimated factors to derive the reduced data for subsequent forecasting. Using directional regression and the inverse third-moment method in the stage of sufficient dimension reduction, the proposed methods can capture the nonmonotone effect of factors on the response. We also allow a diverging number of factors and only impose general regularity conditions on the distribution of factors, avoiding the undesired time reversibility of the factors by the latter. These make the proposed methods fundamentally more applicable than the sufficient forecasting method of Fan et al. (2017). The proposed methods are demonstrated both in simulation studies and an empirical study of forecasting monthly macroeconomic data from 1959 to 2016. Also, our theory contributes to the literature of sufficient dimension reduction, as it includes an invariance result, a path to perform sufficient dimension reduction under the high-dimensional setting without assuming sparsity, and the corresponding order-determination procedure. 
    more » « less