We measure the labor-demand effects of two simultaneous forms of technological change—automation of production processes and consolidation of parts. We collect detailed shop-floor data from four semiconductor firms with different levels of automation and consolidation. Using the O*NET survey instrument, we collect novel task data for operator laborers that contains process-step level skill requirements, including operations and control, near vision, and dexterity requirements. We then use an engineering process model to separate the effects of the distinct technological changes on these process tasks and operator skill requirements. Within an occupation, we show that aggregate measures of technological change can mask the opposing skill biases of multiple simultaneous technological changes. In our empirical context, automation polarizes skill demand as routine, codifiable tasks requiring low and medium skills are executed by machines instead of humans, whereas the remaining and newly created human tasks tend to require low and high skills. Consolidation converges skill demand as formerly divisible low and high skill tasks are transformed into a single indivisible task with medium skill requirements and higher cost of failure. We conclude by developing a new theory for how the separability of tasks mediates the effect of technology change on skill demand by changing the divisibility of labor.
more »
« less
Unpacking Skill Bias: Automation and New Tasks
We extend the canonical model of skill-biased technical change by modeling the allocation of tasks to factors and allowing for automation and the creation of new tasks. In our model, factor prices depend on the set of tasks they perform. Automation can reduce real wages and generate sizable changes in inequality associated with small productivity gains. New tasks can increase or reduce inequality depending on whether they are performed by skilled or unskilled workers. Industry-level data suggest that automation significantly contributed to the rising skill premium, while new tasks reduced inequality in the past but have contributed to inequality recently.
more »
« less
- Award ID(s):
- 1839921
- PAR ID:
- 10398714
- Date Published:
- Journal Name:
- AEA Papers and Proceedings
- Volume:
- 110
- ISSN:
- 2574-0768
- Page Range / eLocation ID:
- 356 to 361
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Robotic task planning is computationally challenging. To reduce planning cost and support life-long operation, we must leverage prior planning experience. To this end, we address the problem of extracting reusable and generalizable abstract skills from successful plan executions. In previous work, we introduced a supporting framework, allowing us, theoretically, to extract an abstract skill from a single execution and later automatically adapt it and reuse it in new domains. We also proved that, given a library of such skills, we can significantly reduce the planning effort for new problems. Nevertheless, until now, abstract-skill extraction could only be performed manually. In this paper, we finally close the automation loop and explain how abstract skills can be practically and automatically extracted. We start by analyzing the desired qualities of an abstract skill and formulate skill extraction as an optimization problem. We then develop two extraction algorithms, based on the novel concept of abstraction-critical state detection. As we show experimentally, the approach is independent of any planning domain.more » « less
-
We document that between 50% and 70% of changes in the U.S. wage structure over the last four decades are accounted for by relative wage declines of worker groups specialized in routine tasks in industries experiencing rapid automation. We develop a conceptual framework where tasks across industries are allocated to different types of labor and capital. Automation technologies expand the set of tasks performed by capital, displacing certain worker groups from jobs for which they have comparative advantage. This framework yields a simple equation linking wage changes of a demographic group to the task displacement it experiences. We report robust evidence in favor of this relationship and show that regression models incorporating task displacement explain much of the changes in education wage differentials between 1980 and 2016. The negative relationship between wage changes and task displacement is unaffected when we control for changes in market power, deunionization, and other forms of capital deepening and technology unrelated to automation. We also propose a methodology for evaluating the full general equilibrium effects of automation, which incorporate induced changes in industry composition and ripple effects due to task reallocation across different groups. Our quantitative evaluation explains how major changes in wage inequality can go hand‐in‐hand with modest productivity gains.more » « less
-
We present a framework for understanding the effects of automation and other types of technological changes on labor demand, and use it to interpret changes in US employment over the recent past. At the center of our framework is the allocation of tasks to capital and labor—the task content of production. Automation, which enables capital to replace labor in tasks it was previously engaged in, shifts the task content of production against labor because of a displacement effect. As a result, automation always reduces the labor share in value added and may reduce labor demand even as it raises productivity. The effects of automation are counterbalanced by the creation of new tasks in which labor has a comparative advantage. The introduction of new tasks changes the task content of production in favor of labor because of a reinstatement effect, and always raises the labor share and labor demand. We show how the role of changes in the task content of production—due to automation and new tasks—can be inferred from industry-level data. Our empirical decomposition suggests that the slower growth of employment over the last three decades is accounted for by an acceleration in the displacement effect, especially in manufacturing, a weaker reinstatement effect, and slower growth of productivity than in previous decades.more » « less
-
Billard, A; Asfour, T; Khatib, O. (Ed.)Task planning is the problem of finding a discrete sequence of actions to achieve a goal. Unfortunately, task planning in robotic domains is computationally challenging. To address this, in our prior work, we explained how knowledge from a successful task solution can be cached for later use, as an “abstract skill.” Such a skill is represented as a trace of states (“road map”) in an abstract space and can be matched with new tasks on-demand. This paper explains how one can use a library of abstract skills, derived from past planning experience, to reduce the computational cost of solving new task planning problems. As we explain, matching a skill to a task allows us to decompose it into independent sub-tasks, which can be quickly solved in parallel. This can be done automatically and dynamically during planning. We begin by formulating this problem of “planning with skills” as a constraint satisfaction problem. We then provide a hierarchical solution algorithm, which integrates with any standard task planner. Finally, we experimentally demonstrate the computational benefits of the approach for reach-avoid tasks.more » « less
An official website of the United States government

