Objective and Impact Statement . We present a fully automated hematological analysis framework based on single-channel (single-wavelength), label-free deep-ultraviolet (UV) microscopy that serves as a fast, cost-effective alternative to conventional hematology analyzers. Introduction . Hematological analysis is essential for the diagnosis and monitoring of several diseases but requires complex systems operated by trained personnel, costly chemical reagents, and lengthy protocols. Label-free techniques eliminate the need for staining or additional preprocessing and can lead to faster analysis and a simpler workflow. In this work, we leverage the unique capabilities of deep-UV microscopy as a label-free, molecular imaging technique to develop a deep learning-based pipeline that enables virtual staining, segmentation, classification, and counting of white blood cells (WBCs) in single-channel images of peripheral blood smears. Methods . We train independent deep networks to virtually stain and segment grayscale images of smears. The segmented images are then used to train a classifier to yield a quantitative five-part WBC differential. Results. Our virtual staining scheme accurately recapitulates the appearance of cells under conventional Giemsa staining, the gold standard in hematology. The trained cellular and nuclear segmentation networks achieve high accuracy, and the classifier can achieve a quantitative five-part differential on unseen test data. Conclusion . This proposed automated hematology analysis framework could greatly simplify and improve current complete blood count and blood smear analysis and lead to the development of a simple, fast, and low-cost, point-of-care hematology analyzer.
more »
« less
Compact and low-cost deep-ultraviolet microscope system for label-free molecular imaging and point-of-care hematological analysis
Deep-ultraviolet (UV) microscopy enables label-free, high-resolution, quantitative molecular imaging and enables unique applications in biomedicine, including the potential for fast hematological analysis at the point-of-care. UV microscopy has been shown to quantify hemoglobin content and white blood cells (five-part differential), providing a simple alternative to the current gold standard, the hematological analyzer. Previously, however, the UV system comprised a bulky broadband laser-driven plasma light source along with a large and expensive camera and 3D translation stage. Here, we present a modified deep-UV microscope system with a compact footprint and low-cost components. We detail the novel design with simple, inexpensive optics and hardware to enable fast and accurate automated imaging. We characterize the system, including a modified low-cost web-camera and custom automated 3D translation stage, and demonstrate its ability to scan and capture large area images. We further demonstrate the capability of the system by imaging and analyzing blood smears, using previously trained networks for automatic segmentation, classification (including 5-part white blood cell differential), and colorization. The developed system is approximately 10 times less expensive than previous configurations and can serve as a point-of-care hematology analyzer, as well as be applied broadly in biomedicine as a simple compact, low-cost, quantitative molecular imaging system.
more »
« less
- Award ID(s):
- 1752011
- PAR ID:
- 10398765
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Biomedical Optics Express
- Volume:
- 14
- Issue:
- 3
- ISSN:
- 2156-7085
- Format(s):
- Medium: X Size: Article No. 1245
- Size(s):
- Article No. 1245
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hematological analysis, via a complete blood count (CBC) and microscopy, is critical for screening, diagnosing, and monitoring blood conditions and diseases but requires complex equipment, multiple chemical reagents, laborious system calibration and procedures, and highly trained personnel for operation. Here we introduce a hematological assay based on label-free molecular imaging with deep-ultraviolet microscopy that can provide fast quantitative information of key hematological parameters to facilitate and improve hematological analysis. We demonstrate that this label-free approach yields 1) a quantitative five-part white blood cell differential, 2) quantitative red blood cell and hemoglobin characterization, 3) clear identification of platelets, and 4) detailed subcellular morphology. Analysis of tens of thousands of live cells is achieved in minutes without any sample preparation. Finally, we introduce a pseudocolorization scheme that accurately recapitulates the appearance of cells under conventional staining protocols for microscopic analysis of blood smears and bone marrow aspirates. Diagnostic efficacy is evaluated by a panel of hematologists performing a blind analysis of blood smears from healthy donors and thrombocytopenic and sickle cell disease patients. This work has significant implications toward simplifying and improving CBC and blood smear analysis, which is currently performed manually via bright-field microscopy, and toward the development of a low-cost, easy-to-use, and fast hematological analyzer as a point-of-care device and for low-resource settings.more » « less
-
Neutropenia is a condition comprising an abnormally low number of neutrophils, a type of white blood cell, which puts patients at an increased risk of severe infections. Neutropenia is especially common among cancer patients and can disrupt their treatment or even be life-threatening in severe cases. Therefore, routine monitoring of neutrophil counts is crucial. However, the current standard of care to assess neutropenia, the complete blood count (CBC), is resource-intensive, time-consuming, and expensive, thereby limiting easy or timely access to critical hematological information such as neutrophil counts. Here, we present a simple technique for fast, label-free neutropenia detection and grading via deep-ultraviolet (deep-UV) microscopy of blood cells in polydimethylsiloxane (PDMS)-based passive microfluidic devices. The devices can potentially be manufactured in large quantities at a low cost, requiring only 1 μL of whole blood for operation. We show that the absolute neutrophil counts (ANC) obtained from our proposed microfluidic device-enabled deep-UV microscopy system are highly correlated with those from CBCs using commercial hematology analyzers in patients with moderate and severe neutropenia, as well as healthy donors. This work lays the foundation for the development of a compact, easy-to-use UV microscope system to track neutrophil counts that is suitable for low-resource, at-home, or point-of-care settings.more » « less
-
Neutropenia is a condition identified by an abnormally low number of neutrophils in the bloodstream and signifies an increased risk of severe infection. Cancer patients are particularly susceptible to this condition, which can be disruptive to their treatment and even life-threatening in severe cases. Thus, it is critical to routinely monitor neutrophil counts in cancer patients. However, the standard of care to assess neutropenia, the complete blood count (CBC), requires expensive and complex equipment, as well as cumbersome procedures, which precludes easy or timely access to critical hematological information, namely neutrophil counts. Here we present a simple, low-cost, fast, and robust technique to detect and grade neutropenia based on label-free multi-spectral deep-UV microscopy. Results show that the developed framework for automated segmentation and classification of live, unstained blood cells in a smear accurately differentiates patients with moderate and severe neutropenia from healthy samples in minutes. This work has significant implications towards the development of a low-cost and easy-to-use point-of-care device for tracking neutrophil counts, which can not only improve the quality of life and treatment-outcomes of many patients but can also be lifesaving.more » « less
-
Ultraviolet (UV) microscopy has recently re-emerged as an important label-free, molecular imaging technique. This stems from the unique UV absorption properties of many endogenous biomolecules that play a critical role in cell structure and function. However, broadband hyperspectral imaging in this spectral region is challenging due to strong chromatic aberrations inherent in UV systems. Here we apply an intensity-based, two-stage, iterative phase-recovery algorithm that leverages the same chromatic aberrations to overcome this challenge. Importantly, knowledge of samples’ dispersion or absorption properties is not required. We demonstrate that the computationally retrieved phase can be applied to digitally refocus images across a large bandwidth. This enables hyperspectral UV imaging with a simple microscope for quantitative molecular analysis. We validate this method through simulations and through experiments with red blood cells.more » « less
An official website of the United States government
