skip to main content


Title: Thermoresponsive Conductivity of Graphene‐Based Fibers
Abstract

Smart materials are versatile material systems which exhibit a measurable response to external stimuli. Recently, smart material systems have been developed which incorporate graphene in order to share on its various advantageous properties, such as mechanical strength, electrical conductivity, and thermal conductivity as well as to achieve unique stimuli‐dependent responses. Here, a graphene fiber‐based smart material that exhibits reversible electrical conductivity switching at a relatively low temperature (60 °C), is reported. Using molecular dynamics (MD) simulation and density functional theory‐based non‐equilibrium Green's function (DFT‐NEGF) approach, it is revealed that this thermo‐response behavior is due to the change in configuration of amphiphilic triblock dispersant molecules occurring in the graphene fiber during heating or cooling. These conformational changes alter the total number of graphene‐graphene contacts within the composite material system, and thus the electrical conductivity as well. Additionally, this graphene fiber fabrication approach uses a scalable, facile, water‐based method, that makes it easy to modify material composition ratios. In all, this work represents an important step forward to enable complete functional tuning of graphene‐based smart materials at the nanoscale while increasing commercialization viability.

 
more » « less
Award ID(s):
1719875
NSF-PAR ID:
10398806
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
19
Issue:
20
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The synthesis and characterization of epoxy‐based composites with few‐layer graphene fillers, which are capable of dual‐functional applications, are reported. It is found that composites with certain types of few‐layer graphene fillers reveal an efficient total electromagnetic interference shielding, SEtot≈ 45 dB, in the important X‐band frequency range,f= 8.2 −12.4 GHz, while simultaneously providing high thermal conductivity,K≈ 8 W m−1K−1, which is a factor of ×35 larger than that of the base matrix material. The efficiency of the dual‐functional application depends on the filler characteristics: thickness, lateral dimensions, aspect ratio, and concentration. Graphene loading fractions above the electrical and thermal “percolation thresholds” allow for strong enhancement of both the electromagnetic interference shielding and heat conduction properties. Interestingly, graphene composites can block the electromagnetic energy even below the electrical percolation threshold, remaining electrically insulating, which is an important feature for some types of thermal interface materials. The dual functionality of the graphene composites can substantially improve the electromagnetic shielding and thermal management of airborne systems while simultaneously reducing their weight and cost.

     
    more » « less
  2. Abstract

    Programmable mechanically active materials (MAMs) are defined as materials that can sense and transduce external stimuli into mechanical outputs or conversely that can detect mechanical stimuli and respond through an optical change or other change in the appearance of the material. Programmable MAMs are a subset of responsive materials and offer potential in next generation robotics and smart systems. This review specifically focuses on hydrogel‐based MAMs because of their mechanical compliance, programmability, biocompatibility, and cost‐efficiency. First, the composition of hydrogel MAMs along with the top‐down and bottom‐up approaches used for programming these materials are discussed. Next, the fundamental principles for engineering responsivity in MAMS, which includes optical, thermal, magnetic, electrical, chemical, and mechanical stimuli, are considered. Some advantages and disadvantages of different responsivities are compared. Then, to conclude, the emerging applications of hydrogel‐based MAMs from recently published literature, as well as the future outlook of MAM studies, are summarized.

     
    more » « less
  3. Abstract

    Shape morphing materials have been extensively studied to control the formation of sophisticated three-dimensional (3D) structures and devices for a broad range of applications. Various methods, including the buckling of pre-strained bilayer composites, stimuli-responsive shape-shifting of shape memory polymers, and hydrogels, have been previously employed to transform 2D sheets to 3D structures and devices. However, the residual stress locked in these shape-shifting structures will drive them to gradually revert to their original layouts upon the removal of external stimuli or constrains. Here, we report a multistimuli-responsive vitrimer (m-vitrimer) bearing thermal- and photo-reversible disulfide bonds as shape programmable and healable materials for functional 3D devices. The mechanical properties and thermomechanical properties of vitrimer were tuned by altering the disulfide content and catalyst loading. Heat and light exposure induces effective stress relaxation and network rearrangement, enabling material shape programming and healing. We demonstrate that printed flexible smart electronics are fabricated using the m-vitrimer as a matrix and printed conductive silver nanoparticles as conductive wire. The printed electronics possess good electro-mechanical properties, strong interfacial bonding, and thermal- and photo-responsive shape programming. Moreover, the m-vitrimer can be healed upon damage by heat and light, which partially restores silver conductivity and protect the electronics from further damage. The converging of multi-stimuli-responsive polymers and printed electronics for functional 3D devices have the potential of finding broad applications in smart and morphing electronics, biomedical devices, and 4D printing.

     
    more » « less
  4. Abstract

    The family of 2D semiconductors (2DSCs) has grown rapidly since the first isolation of graphene. The emergence of each 2DSC material brings considerable excitement for its unique electrical, optical, and mechanical properties, which are often highly distinct from their 3D counterparts. To date, studies of 2DSC are majorly focused on group IV (e.g., graphene, silicene), group V (e.g., phosphorene), or group VIB compounds (transition metal dichalcogenides, TMD), and have inspired considerable effort in searching for novel 2DSCs. Here, the first electrical characterization of group IV–V compounds is presented by investigating few‐layer GeAs field‐effect transistors. With back‐gate device geometry, p‐type behaviors are observed at room temperature. Importantly, the hole carrier mobility is found to approach 100 cm2V−1s−1with ON–OFF ratio over 105, comparable well with state‐of‐the‐art TMD devices. With the unique crystal structure the few‐layer GeAs show highly anisotropic optical and electronic properties (anisotropic mobility ratio of 4.8). Furthermore, GeAs based transistor shows prominent and rapid photoresponse to 1.6 µm radiation with a photoresponsivity of 6 A W−1and a rise and fall time of ≈3 ms. This study of group IV–V 2DSC materials greatly expands the 2D family, and can enable new opportunities in functional electronics and optoelectronics based on 2DSCs.

     
    more » « less
  5. Abstract

    Scaffold‐guided formation of neuronal‐like networks, especially under electrical stimulation, can be an appealing avenue toward functional restoration of injured nervous systems. Here, 3D conductive scaffolds are fabricated based on printed microfiber constructs using near‐field electrostatic printing (NFEP) and graphene oxide (GO) coating. Various microfiber patterns are obtained from poly(l‐lactic acid‐co‐caprolactone) (PLCL) using NFEP and complexity is achieved via modulating the fiber overlay angles (45°, 60°, 75°, 90°), fiber diameters (15 to 148 µm), and fiber spatial organization (spider web and tubular structure). Upon coating GO onto PLCL microfibers via a layer‐by‐layer (L‐b‐L) assembly technique and in situ reduction into reduced GO (rGO), the obtained conductive scaffolds, with 25–50 layers of rGO, demonstrate superior conductivity (≈0.95 S cm−1) and capability of inducing neuronal‐like network formation along the conductive microfibers under electrical stimulation (100–150 mV cm−1). Both electric field (0–150 mV cm−1) and microfiber diameter (17–150 µm) affect neurite outgrowth (PC‐12 cells and primary mouse hippocampal neurons) and the formation of orientated neuronal‐like networks. With further demonstration of such guidance to neuronal cells, these conductive scaffolds may see versatile applications in nerve regeneration and neural engineering.

     
    more » « less