skip to main content


Title: The phononic and charge density wave behavior of entire rare-earth tritelluride series with chemical pressure and temperature
Here, we present comprehensive phononic and charge density wave properties (CDW) of rare-earth van der Waals tritellurides through temperature dependent angle-resolved Raman spectroscopy measurements. All the possible rare-earth tritellurides (RTe 3 ) ranging from R = La–Nd, Sm, Gd–Tm were synthesized through a chemical vapor transport technique to achieve high quality crystals with excellent CDW characteristics. Raman spectroscopy studies successfully identify the emergence of the CDW state and transition temperature (T CDW ), which offers a non-destructive method to identify their CDW response with micron spatial resolution. Temperature dependent Raman measurements further correlate how the atomic mass of metal cations and the resulting chemical pressure influence its CDW properties and offer detailed insight into the strength of CDW amplitude mode-phonon coupling during the CDW transition. Angle-resolved Raman measurements offer the first insights into the CDW-phonon symmetry interplay by monitoring the change in the symmetry of phonon mode across the CDW transition. Overall results introduce the library of RTe 3 CDW materials and establish their characteristics through the non-destructive angle-resolved Raman spectroscopy technique.  more » « less
Award ID(s):
2052527 1933214 2111812
NSF-PAR ID:
10398826
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
APL Materials
Volume:
10
Issue:
11
ISSN:
2166-532X
Page Range / eLocation ID:
111112
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rare-earth tritellurides (RTe 3 ) are a distinct class of 2D layered materials that recently gained significant attention due to hosting such quantum collective phenomena as superconductivity or charge density waves (CDWs). Many members of this van der Waals (vdW) family crystals exhibit CDW behavior at room temperature, i.e. , RTe 3 compound where R = La, Ce, Pr, Nd, Sm, Gd, and Tb. Here, our systematic studies establish the CDW properties of RTe 3 when the vdW spacing/interaction strength between adjacent RTe 3 layers is engineered under extreme hydrostatic pressures. Using a non-destructive spectroscopy technique, pressure-dependent Raman studies first establish the pressure coefficients of phonon and CDW amplitude modes for a variety of RTe 3 materials, including LaTe 3 , CeTe 3 , PrTe 3 , NdTe 3 , SmTe 3 , GdTe 3 , and TbTe 3 . Results further show that the CDW phase is eventually suppressed at high pressures when the interlayer spacing is reduced and interaction strength is increased. Comparison between different RTe 3 materials shows that LaTe 3 with the largest thermodynamic equilibrium interlayer spacing (smallest chemical pressure) exhibits the most stable CDW phases at high pressures. In contrast, CDW phases in late RTe 3 systems with the largest internal chemical pressures are suppressed easily with applied pressure. Overall results provide comprehensive insights into the CDW response of the entire RTe 3 series under extreme pressures, offering an understanding of CDW formation/engineering in a unique class of vdW RTe 3 material systems. 
    more » « less
  2. Recently a new research field of quasi-one-dimensional (1D) van der Waals quantummaterials has emerged from earlier work on low-dimensional systems [1-2]. The quasi-1D van der Waalsmaterials have 1D motifs in their crystal structure [1]. Many of these materials reveal strongly correlatedphenomena such as charge density waves (CDW) [1-2]. The CDW phase is a periodic modulation of theelectronic charge density, accompanied by distortions in the underlying crystal lattice. Potential uses for CDWmaterials include memory storage and oscillators [3]. Raman spectroscopy can identify the CDW transitions todifferent phases via the appearance of phonon peaks due to emerging superstructure or the disappearance ofcertain peaks due to the loss of translation symmetry in the crystal lattice [3]. In this presentation, we report theresults of the angle and temperature-dependent Raman scattering spectroscopy investigation of themechanically exfoliated nanowires of the quasi-1D Nb van der Waals material. It is known that Nb forms in atetragonal crystal structure with space group 124 (P4/mcc). Recently, this material attracted attention as aCDW material with multiple phase transitions, some of them, possibly, near room temperature. Littleinformation is known on the Raman characteristics of this material. Our Raman data for different polarizationangles show strong anisotropy in the response depending on the crystal direction. The most pronouncedRaman peaks reveal strong temperature dependence. The results of the measurements will be compared withthe theoretical predictions. Our data is important for further investigation of this quasi-1D CDW material forpossible applications in phase-change memory and reconfigurable devices. A.A.B. acknowledges the support of the Vannevar Bush Faculty Fellowship (VBFF) from the Office of NavalResearch (ONR) contract N00014-21-1-2947 “One-Dimensional Quantum Materials” and the National ScienceFoundation (NSF) program Designing Materials to Revolutionize and Engineer our Future (DMREF) via aproject DMR-1921958 “Data-Driven Discovery of Synthesis Pathways and Distinguishing ElectronicPhenomena of 1D van der Waals Bonded Solids”. A. D. and S. K. acknowledge support through the MaterialGenome Initiative funding allocated to the National Institute of Standards and Technology. [1] A. A. Balandin, F. Kargar, T. T. Salguero, and R. Lake, “One-dimensional van der Waals quantummaterials", Mater. Today, 55, 74 (2022). [2] A. A. Balandin, R. K. Lake, and T. T. Salguero, "One-dimensional van der Waals materials - Advent of a newresearch field" Appl. Phys. Lett., 121, 040401 (2022). [3] A. A. Balandin, S. V. Zaitzev-Zotov, and G. Grüner, "Charge-density-wave quantum materials and devices—New developments and future prospects", Appl. Phys. Lett., 119, 170401 (2021). [4] R. Samnakay, et al., “Zone-folded phonons and the charge-density-wave transition in 1T-TaSe2 thin films, Nano Lett., 15, 2965 (2015). 
    more » « less
  3. Abstract Body: Recently a new research field of quasi-one-dimensional (1D) van der Waals quantummaterials has emerged from earlier work on low-dimensional systems [1-2]. The quasi-1D van der Waalsmaterials have 1D motifs in their crystal structure [1]. Many of these materials reveal strongly correlatedphenomena such as charge density waves (CDW) [1-2]. The CDW phase is a periodic modulation of theelectronic charge density, accompanied by distortions in the underlying crystal lattice. Potential uses for CDWmaterials include memory storage and oscillators [3]. Raman spectroscopy can identify the CDW transitions todifferent phases via the appearance of phonon peaks due to emerging superstructure or the disappearance ofcertain peaks due to the loss of translation symmetry in the crystal lattice [3]. In this presentation, we report theresults of the angle and temperature-dependent Raman scattering spectroscopy investigation of themechanically exfoliated nanowires of the quasi-1D Nb van der Waals material. It is known that Nb forms in atetragonal crystal structure with space group 124 (P4/mcc). Recently, this material attracted attention as aCDW material with multiple phase transitions, some of them, possibly, near room temperature. Littleinformation is known on the Raman characteristics of this material. Our Raman data for different polarizationangles show strong anisotropy in the response depending on the crystal direction. The most pronouncedRaman peaks reveal strong temperature dependence. The results of the measurements will be compared withthe theoretical predictions. Our data is important for further investigation of this quasi-1D CDW material forpossible applications in phase-change memory and reconfigurable devices. A.A.B. acknowledges the support of the Vannevar Bush Faculty Fellowship (VBFF) from the Office of NavalResearch (ONR) contract N00014-21-1-2947 “One-Dimensional Quantum Materials” and the National ScienceFoundation (NSF) program Designing Materials to Revolutionize and Engineer our Future (DMREF) via aproject DMR-1921958 “Data-Driven Discovery of Synthesis Pathways and Distinguishing ElectronicPhenomena of 1D van der Waals Bonded Solids”. A. D. and S. K. acknowledge support through the MaterialGenome Initiative funding allocated to the National Institute of Standards and Technology. [1] A. A. Balandin, F. Kargar, T. T. Salguero, and R. Lake, “One-dimensional van der Waals quantummaterials", Mater. Today, 55, 74 (2022). [2] A. A. Balandin, R. K. Lake, and T. T. Salguero, "One-dimensional van der Waals materials - Advent of a newresearch field" Appl. Phys. Lett., 121, 040401 (2022). [3] A. A. Balandin, S. V. Zaitzev-Zotov, and G. Grüner, "Charge-density-wave quantum materials and devices—New developments and future prospects", Appl. Phys. Lett., 119, 170401 (2021). [4] R. Samnakay, et al., “Zone-folded phonons and the charge-density-wave transition in 1T-TaSe2 thin films,” Nano Lett., 15, 2965 (2015). 
    more » « less
  4. Abstract

    Charge density wave (CDW) ordering has been an important topic of study for a long time owing to its connection with other exotic phases such as superconductivity and magnetism. The$$R{\textrm{Te}}_{3}$$RTe3(R= rare-earth elements) family of materials provides a fertile ground to study the dynamics of CDW in van der Waals layered materials, and the presence of magnetism in these materials allows to explore the interplay among CDW and long range magnetic ordering. Here, we have carried out a high-resolution angle-resolved photoemission spectroscopy (ARPES) study of a CDW material$${\textrm{Gd}}{\textrm{Te}}_{3}$$GdTe3, which is antiferromagnetic below$$\sim \mathrm {12~K}$$12K, along with thermodynamic, electrical transport, magnetic, and Raman measurements. Our ARPES data show a two-fold symmetric Fermi surface with both gapped and ungapped regions indicative of the partial nesting. The gap is momentum dependent, maximum along$${\overline{\Gamma }}-\mathrm{\overline{Z}}$$Γ¯-Z¯and gradually decreases going towards$${\overline{\Gamma }}-\mathrm{\overline{X}}$$Γ¯-X¯. Our study provides a platform to study the dynamics of CDW and its interaction with other physical orders in two- and three-dimensions.

     
    more » « less
  5. Abstract Raman spectroscopy-based temperature sensing usually tracks the change of Raman wavenumber, linewidth and intensity, and has found very broad applications in characterizing the energy and charge transport in nanomaterials over the last decade. The temperature coefficients of these Raman properties are highly material-dependent, and are subjected to local optical scattering influence. As a result, Raman-based temperature sensing usually suffers quite large uncertainties and has low sensitivity. Here, a novel method based on dual resonance Raman phenomenon is developed to precisely measure the absolute temperature rise of nanomaterial (nm WS 2 film in this work) from 170 to 470 K. A 532 nm laser (2.33 eV photon energy) is used to conduct the Raman experiment. Its photon energy is very close to the excitonic transition energy of WS 2 at temperatures close to room temperature. A parameter, termed resonance Raman ratio (R3) Ω = I A 1g / I E 2g is introduced to combine the temperature effects on resonance Raman scattering for the A 1g and E 2g modes. Ω has a change of more than two orders of magnitude from 177 to 477 K, and such change is independent of film thickness and local optical scattering. It is shown that when Ω is varied by 1%, the temperature probing sensitivity is 0.42 K and 1.16 K at low and high temperatures, respectively. Based on Ω, the in-plane thermal conductivity ( k ) of a ∼25 nm-thick suspended WS 2 film is measured using our energy transport state-resolved Raman (ET-Raman). k is found decreasing from 50.0 to 20.0 Wm −1 K −1 when temperature increases from 170 to 470 K. This agrees with previous experimental and theoretical results and the measurement data using our FET-Raman. The R3 technique provides a very robust and high-sensitivity method for temperature probing of nanomaterials and will have broad applications in nanoscale thermal transport characterization, non-destructive evaluation, and manufacturing monitoring. 
    more » « less