skip to main content

This content will become publicly available on August 25, 2023

Title: Pressure-induced suppression of charge density phases across the entire rare-earth tritellurides by optical spectroscopy
The rare-earth tritellurides (RTe 3 ) are a distinct class of 2D layered materials that recently gained significant attention due to hosting such quantum collective phenomena as superconductivity or charge density waves (CDWs). Many members of this van der Waals (vdW) family crystals exhibit CDW behavior at room temperature, i.e. , RTe 3 compound where R = La, Ce, Pr, Nd, Sm, Gd, and Tb. Here, our systematic studies establish the CDW properties of RTe 3 when the vdW spacing/interaction strength between adjacent RTe 3 layers is engineered under extreme hydrostatic pressures. Using a non-destructive spectroscopy technique, pressure-dependent Raman studies first establish the pressure coefficients of phonon and CDW amplitude modes for a variety of RTe 3 materials, including LaTe 3 , CeTe 3 , PrTe 3 , NdTe 3 , SmTe 3 , GdTe 3 , and TbTe 3 . Results further show that the CDW phase is eventually suppressed at high pressures when the interlayer spacing is reduced and interaction strength is increased. Comparison between different RTe 3 materials shows that LaTe 3 with the largest thermodynamic equilibrium interlayer spacing (smallest chemical pressure) exhibits the most stable CDW phases at high pressures. In contrast, CDW phases in late more » RTe 3 systems with the largest internal chemical pressures are suppressed easily with applied pressure. Overall results provide comprehensive insights into the CDW response of the entire RTe 3 series under extreme pressures, offering an understanding of CDW formation/engineering in a unique class of vdW RTe 3 material systems. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
1933214 1904716 1825594
Publication Date:
NSF-PAR ID:
10376457
Journal Name:
Journal of Materials Chemistry C
Volume:
10
Issue:
33
Page Range or eLocation-ID:
11995 to 12000
ISSN:
2050-7526
Sponsoring Org:
National Science Foundation
More Like this
  1. An emerging class of superhard materials for extreme environment applications are compounds formed by heavy transition metals with light elements. In this work, ultrahigh pressure experiments on transition metal rhenium diboride (ReB2) were carried out in a diamond anvil cell under isothermal and non-hydrostatic compression. Two independent high-pressure experiments were carried out on ReB2 for the first time up to a pressure of 241 GPa (volume compression V/V0 = 0.731 ± 0.004), with platinum as an internal pressure standard in X-ray diffraction studies. The hexagonal phase of ReB2 was stable under highest pressure, and the anisotropy between the a-axis and c-axis compression increases with pressure to 241 GPa. The measured equation of state (EOS) above the yield stress of ReB2 is well represented by the bulk modulus K0 = 364 GPa and its first pressure derivative K0´ = 3.53. Corresponding density-functional-theory (DFT) simulations of the EOS and elastic constants agreed well with the experimental data. DFT results indicated that ReB2 becomes more ductile with enhanced tendency towards metallic bonding under compression. The DFT results also showed strong crystal anisotropy up to the maximum pressure under study. The pressure-enhanced electron density distribution along the Re and B bond direction renders themore »material highly incompressible along the c-axis. Our study helps to establish the fundamental basis for anisotropic compression of ReB2 under ultrahigh pressures.« less
  2. Abstract

    Amorphous diamond, formed by high-pressure compression of glassy carbon, is of interests for new carbon materials with unique properties such as high compressive strength. Previous studies attributed the ultrahigh strength of the compressed glassy carbon to structural transformation from graphite-likesp2-bonded structure to diamond-likesp3-bonded structure. However, there is no direct experimental determination of the bond structure of the compressed glassy carbon, because of experimental challenges. Here we succeeded to experimentally determine pair distribution functions of a glassy carbon at ultrahigh pressures up to 49.0 GPa by utilizing our recently developed double-stage large volume cell. Our results show that the C-C-C bond angle in the glassy carbon remains close to 120°, which is the ideal angle for thesp2-bonded honey-comb structure, up to 49.0 GPa. Our data clearly indicate that the glassy carbon maintains graphite-like structure up to 49.0 GPa. In contrast, graphene interlayer distance decreases sharply with increasing pressure, approaching values of the second neighbor C-C distance above 31.4 GPa. Linkages between the graphene layers may be formed with such a short distance, but not in the form of tetrahedralsp3bond. The unique structure of the compressed glassy carbon may be the key to the ultrahigh strength.

  3. High-entropy alloys are a new type of material developed in recent years. It breaks the traditional alloy-design conventions and has many excellent properties. High-pressure treatment is an effective means to change the structures and properties of metal materials. The pressure can effectively vary the distance and interaction between molecules or atoms, so as to change the bonding mode, and form high-pressure phases. These new material states often have different structures and characteristics, compared to untreated metal materials. At present, high-pressure technology is an effective method to prepare alloys with unique properties, and there are many techniques that can achieve high pressures. The most commonly used methods include high-pressure torsion, large cavity presses and diamond-anvil-cell presses. The materials show many unique properties under high pressures which do not exist under normal conditions, providing a new approach for the in-depth study of materials. In this paper, high-pressure (HP) technologies applied to high-entropy alloys (HEAs) are reviewed, and some possible ways to develop good properties of HEAs using HP as fabrication are introduced. Moreover, the studies of HEAs under high pressures are summarized, in order to deepen the basic understanding of HEAs under high pressures, which provides the theoretical basis for the applicationmore »of high-entropy alloys.« less
  4. null (Ed.)
    Garnet is an important mineral phase in the upper mantle as it is both a key component in bulk mantle rocks, and a primary phase at high-pressure within subducted basalt. Here, we focus on the strength of garnet and the texture that develops within garnet during accommodation of differential deformational strain. We use X-ray diffraction in a radial geometry to analyze texture development in situ in three garnet compositions under pressure at 300 K: a natural garnet (Prp60Alm37) to 30 GPa, and two synthetic majorite-bearing compositions (Prp59Maj41 and Prp42Maj58) to 44 GPa. All three garnets develop a modest (100) texture at elevated pressure under axial compression. Elasto-viscoplastic self-consistent (EVPSC) modeling suggests that two slip systems are active in the three garnet compositions at all pressures studied: {110}<1-21 11> and {001}<110>. We determine a flow strength of ~5 GPa at pressures between 10 to 15 GPa for all three garnets; these values are higher than previously measured yield strengths measured on natural and majoritic garnets. Strengths calculated using the experimental lattice strain differ from the strength generated from those calculated using EVPSC. Prp67Alm33, Prp59Maj41 and Prp42Maj58 are of comparable strength to each other at room temperature, which indicates that majorite substitutionmore »does not greatly affect the strength of garnets. Additionally, all three garnets are of similar strength as lower mantle phases such as bridgmanite and ferropericlase, suggesting that garnet may not be notably stronger than the surrounding lower mantle/deep upper mantle phases at the base of the upper mantle.« less
  5. Disordered hyperuniform materials are a new, exotic class of amorphous matter that exhibits crystal-like behavior, in the sense that volume-fraction fluctuations are suppressed at large length scales, and yet they are isotropic and do not display diffraction Bragg peaks. These materials are endowed with novel photonic, phononic, transport and mechanical properties, which are useful for a wide range of applications. Motivated by the need to fabricate large samples of disordered hyperuniform systems at the nanoscale, we study the small-wavenumber behavior of the spectral density of binary mixtures of charged colloids in suspension. The interaction between the colloids is approximated by a repulsive hard-core Yukawa potential. We find that at dimensionless temperatures below 0.05 and dimensionless inverse screening lengths below 1.0, which are experimentally accessible, the disordered systems become effectively hyperuniform. Moreover, as the temperature and inverse screening length decrease, the level of hyperuniformity increases, as quantified by the “hyperuniformity index”. Our results suggest an alternative approach to synthesize large samples of effectively disordered hyperuniform materials at the nanoscale under standard laboratory conditions. In contrast with the usual route to synthesize disordered hyperuniform materials by jamming particles, this approach is free from the burden of applying high pressure to compress themore »systems.« less