skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2052527

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    2D layered semiconductors have attracted considerable attention for beyond‐Si complementary metal‐oxide‐semiconductor (CMOS) technologies. They can be prepared into ultrathin channel materials toward ultrascaled device architectures, including double‐gate field‐effect‐transistors (DGFETs). This work presents an experimental analysis of DGFETs constructed from chemical vapor deposition (CVD)‐grown monolayer (1L) molybdenum disulfide (MoS2) with atomic layer deposition (ALD) of hafnium oxide (HfO2) high‐k gate dielectrics (top and bottom). This extends beyond previous studies of DGFETs based mostly on exfoliated (few‐nm thick) MoS2flakes, and advances toward large‐area wafer‐scale processing. Here, significant improvements in performance are obtained with DGFETs (i.e., improvements in ON/OFF ratio, ON‐state current, sub‐threshold swing, etc.) compared to single top‐gate FETs. In addition to multi‐gate device architectures (e.g., DGFETs), the scaling of the equivalent oxide thickness (EOT) is crucial toward improved electrostatics required for next‐generation transistors. However, the impact of EOT scaling on the characteristics of CVD‐grown MoS2DGFETs remains largely unexplored. Thus, this work studies the impact of EOT scaling on subthreshold swing (SS) and gate hysteresis using current–voltage (I–V) measurements with varying sweep rates. The experimental analysis and results elucidate the basic mechanisms responsible for improvements in CVD‐grown 1L‐MoS2DGFETs compared to standard top‐gate FETs.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. Abstract

    Previous work that studied hexagonal boron nitride (h‐BN) memristor DC resistive‐switching characteristics is extended to include an experimental understanding of their dynamic behavior upon programming or synaptic weight update. The focus is on the temporal resistive switching response to driving stimulus (programming voltage pulses) effecting conductance updates during training in neural network crossbar implementations. Test arrays are fabricated at the wafer level, enabled by the transfer of CVD‐grown few‐layer (8 layer) or multi‐layer (18 layer) h‐BN films. A comprehensive study of their temporal response under various conditions–voltage pulse amplitude, edge rate (pulse rise/fall times), and temperature–provides new insights into the resistive switching process toward optimized devices and improvements in their implementation of artificial neural networks. The h‐BN memristors can achieve multi‐state operation through ultrafast pulsed switching (< 25 ns) with high energy efficiency (≈10 pJ pulse−1).

     
    more » « less
  3. Abstract

    Excitons in two-dimensional (2D) semiconductors have offered an attractive platform for optoelectronic and valleytronic devices. Further realizations of correlated phases of excitons promise device concepts not possible in the single particle picture. Here we report tunable exciton “spin” orders in WSe2/WS2moiré superlattices. We find evidence of an in-plane (xy) order of exciton “spin”—here, valley pseudospin—around exciton fillingvex = 1, which strongly suppresses the out-of-plane “spin” polarization. Upon increasingvexor applying a small magnetic field of ~10 mT, it transitions into an out-of-plane ferromagnetic (FM-z) spin order that spontaneously enhances the “spin” polarization, i.e., the circular helicity of emission light is higher than the excitation. The phase diagram is qualitatively captured by a spin-1/2 Bose–Hubbard model and is distinct from the fermion case. Our study paves the way for engineering exotic phases of matter from correlated spinor bosons, opening the door to a host of unconventional quantum devices.

     
    more » « less
  4. Abstract

    Group IV‐VI van der Waals crystals (MX, where M = Ge, Sn, and X = S, Se) are receiving increasing attention as semiconducting thermoelectric materials with nontoxic, earth‐abundant composition. Among them, SnSe is considered the most promising as it exhibits a remarkably high thermoelectric figure of merit (ZT), initially attributed to its low lattice thermal conductivity. However, it has been shown that the electronic band structure plays an equally important role in thermoelectric performance. A certain band shape, described as a “pudding mold” and characteristic for all MXs, has been predicted to significantly improveZTby combining good electrical conductivity with high Seebeck coefficient. This subtle feature is explored experimentally for GeS, SnS, and SnSe by means of angle‐resolved photoemission spectroscopy. The technique also allows for the determination of the effective mass and Fermi level position of as‐grown undoped crystals. The findings are supported by ab initio calculations of the electronic band structure. The results greatly contribute to the general understanding of the valence band dispersion of MXs and reinforce their potential as high‐performance thermoelectric materials, additionally giving prospects for designing systems consisting of van der Waals heterostructures.

     
    more » « less
  5. Abstract

    2D Janus Transition Metal Dichalcogenides (TMDs) have attracted much interest due to their exciting quantum properties arising from their unique two‐faced structure, broken‐mirror symmetry, and consequent colossal polarization field within the monolayer. While efforts are made to achieve high‐quality Janus monolayers, the existing methods rely on highly energetic processes that introduce unwanted grain‐boundary and point defects with still unexplored effects on the material's structural and excitonic properties Through high‐resolution scanning transmission electron microscopy (HRSTEM), density functional theory (DFT), and optical spectroscopy measurements; this work introduces the most encountered and energetically stable point defects. It establishes their impact on the material's optical properties. HRSTEM studies show that the most energetically stable point defects are single (VS andVSe) and double chalcogen vacancy (VSVSe), interstitial defects (Mi), and metal impurities (MW) and establish their structural characteristics. DFT further establishes their formation energies and related localized bands within the forbidden band. Cryogenic excitonic studies on h‐BN‐encapsulated Janus monolayers offer a clear correlation between these structural defects and observed emission features, which closely align with the results of the theory. The overall results introduce the defect genome of Janus TMDs as an essential guideline for assessing their structural quality and device properties.

     
    more » « less
  6. Abstract

    Moiré superlattices of semiconducting transition metal dichalcogenides enable unprecedented spatial control of electron wavefunctions, leading to emerging quantum states. The breaking of translational symmetry further introduces a new degree of freedom: high symmetry moiré sites of energy minima behaving as spatially separated quantum dots. We demonstrate the superposition between two moiré sites by constructing a trilayer WSe2/monolayer WS2moiré heterojunction. The two moiré sites in the first layer WSe2interfacing WS2allow the formation of two different interlayer excitons, with the hole residing in either moiré site of the first layer WSe2and the electron in the third layer WSe2. An electric field can drive the hybridization of either of the interlayer excitons with the intralayer excitons in the third WSe2layer, realizing the continuous tuning of interlayer exciton hopping between two moiré sites and a superposition of the two interlayer excitons, distinctively different from the natural trilayer WSe2.

     
    more » « less
  7. Abstract

    This paper provides comprehensive experimental analysis relating to improvements in the two-dimensional (2D) p-type metal–oxide–semiconductor (PMOS) field effect transistors (FETs) by pure van der Waals (vdW) contacts on few-layer tungsten diselenide (WSe2) with high-k metal gate (HKMG) stacks. Our analysis shows that standard metallization techniques (e.g., e-beam evaporation at moderate pressure ~ 10–5 torr) results in significant Fermi-level pinning, but Schottky barrier heights (SBH) remain small (< 100 meV) when using high work function metals (e.g., Pt or Pd). Temperature-dependent analysis uncovers a more dominant contribution to contact resistance from the channel access region and confirms significant improvement through less damaging metallization techniques (i.e., reduced scattering) combined with strongly scaled HKMG stacks (enhanced carrier density). A clean contact/channel interface is achieved through high-vacuum evaporation and temperature-controlled stepped deposition providing large improvements in contact resistance. Our study reports low contact resistance of 5.7 kΩ-µm, with on-state currents of ~ 97 µA/µm and subthreshold swing of ~ 140 mV/dec in FETs with channel lengths of 400 nm. Furthermore, theoretical analysis using a Landauer transport ballistic model for WSe2SB-FETs elucidates the prospects of nanoscale 2D PMOS FETs indicating high-performance (excellent on-state current vs subthreshold swing benchmarks) towards the ultimate CMOS scaling limit.

     
    more » « less
  8. Abstract

    2D Janus transition metal dichalcogenides (TMDs) have attracted attention due to their emergent properties arising from broken mirror symmetry and self‐driven polarization fields. While it has been proposed that their vdW superlattices hold the key to achieving superior properties in piezoelectricity and photovoltaic, available synthesis has ultimately limited their realization. Here, the first packed vdW nanoscrolls made from Janus TMDs through a simple one‐drop solution technique are reported. The results, including ab initio simulations, show that the Bohr radius difference between the top sulfur and the bottom selenium atoms within Janus (M = Mo, W) results in a permanent compressive surface strain that acts as a nanoscroll formation catalyst after small liquid interaction. Unlike classical 2D layers, the surface strain in Janus TMDs can be engineered from compressive to tensile by placing larger Bohr radius atoms on top (to yield inverted C scrolls. Detailed microscopy studies offer the first insights into their morphology and readily formed Moiré lattices. In contrast, spectroscopy and FETs studies establish their excitonic and device properties and highlight significant differences compared to 2D flat Janus TMDs. These results introduce the first polar Janus TMD nanoscrolls and introduce inherent strain‐driven scrolling dynamics as a catalyst to create superlattices.

     
    more » « less
  9. Abstract

    Janus transition metal dichalcogenides are an emerging class of atomically thin materials with engineered broken mirror symmetry that gives rise to long‐lived dipolar excitons, Rashba splitting, and topologically protected solitons. They hold great promise as a versatile nonlinear optical platform due to their broadband harmonic generation tunability, ease of integration on photonic structures, and nonlinearities beyond the basal crystal plane. Here, second and third harmonic generation in MoSSe and WSSe Janus monolayers is studied. Polarization‐resolved spectroscopy is used to map the full second‐order susceptibility tensor of MoSSe, including its out‐of‐plane components. In addition, the effective third‐order susceptibility and the second‐order nonlinear dispersion close to exciton resonances for both MoSSe and WSSe are measured at room and cryogenic temperatures. This work sets a bedrock for understanding the nonlinear optical properties of Janus transition metal dichalcogenides and probing their use in the next‐generation on‐chip multifaceted photonic devices.

     
    more » « less
  10. Free, publicly-accessible full text available December 1, 2025