skip to main content

Search for: All records

Award ID contains: 2052527

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Named after the two‐faced Roman god of transitions, transition metal dichalcogenide (TMD) Janus monolayers have two different chalcogen surfaces, inherently breaking the out‐of‐plane mirror symmetry. The broken mirror symmetry and the resulting potential gradient lead to the emergence of quantum properties such as the Rashba effect and the formation of dipolar excitons. Experimental access to these quantum properties, however, hinges on the ability to produce high‐quality 2D Janus monolayers. Here, these results introduce a holistic 2D Janus synthesis technique that allows real‐time monitoring of the growth process. This prototype chamber integrates in situ spectroscopy, offering fundamental insights into the structural evolution and growth kinetics, that allow the evaluation and optimization of the quality of Janus monolayers. The versatility of this method is demonstrated by synthesizing and monitoring the conversion of SWSe, SNbSe, and SMoSe Janus monolayers. Deterministic conversion and real‐time data collection further aid in conversion of exfoliated TMDs to Janus monolayers and unparalleled exciton linewidth values are reached, compared to the current best standard. The results offer an insight into the process kinetics and aid in the development of new Janus monolayers with high optical quality, which is much needed to access their exotic properties.

    more » « less
  2. Abstract Engineering the properties of quantum materials via strong light-matter coupling is a compelling research direction with a multiplicity of modern applications. Those range from modifying charge transport in organic molecules, steering particle correlation and interactions, and even controlling chemical reactions. Here, we study the modification of the material properties via strong coupling and demonstrate an effective inversion of the excitonic band-ordering in a monolayer of WSe 2 with spin-forbidden, optically dark ground state. In our experiments, we harness the strong light-matter coupling between cavity photon and the high energy, spin-allowed bright exciton, and thus creating two bright polaritonic modes in the optical bandgap with the lower polariton mode pushed below the WSe 2 dark state. We demonstrate that in this regime the commonly observed luminescence quenching stemming from the fast relaxation to the dark ground state is prevented, which results in the brightening of this intrinsically dark material. We probe this effective brightening by temperature-dependent photoluminescence, and we find an excellent agreement with a theoretical model accounting for the inversion of the band ordering and phonon-assisted polariton relaxation. 
    more » « less
  3. Here, we present comprehensive phononic and charge density wave properties (CDW) of rare-earth van der Waals tritellurides through temperature dependent angle-resolved Raman spectroscopy measurements. All the possible rare-earth tritellurides (RTe 3 ) ranging from R = La–Nd, Sm, Gd–Tm were synthesized through a chemical vapor transport technique to achieve high quality crystals with excellent CDW characteristics. Raman spectroscopy studies successfully identify the emergence of the CDW state and transition temperature (T CDW ), which offers a non-destructive method to identify their CDW response with micron spatial resolution. Temperature dependent Raman measurements further correlate how the atomic mass of metal cations and the resulting chemical pressure influence its CDW properties and offer detailed insight into the strength of CDW amplitude mode-phonon coupling during the CDW transition. Angle-resolved Raman measurements offer the first insights into the CDW-phonon symmetry interplay by monitoring the change in the symmetry of phonon mode across the CDW transition. Overall results introduce the library of RTe 3 CDW materials and establish their characteristics through the non-destructive angle-resolved Raman spectroscopy technique. 
    more » « less
  4. The polarized photoluminescence from atomically thin transition metal dichalcogenides is a frequently applied tool to scrutinize optical selection rules and valley physics, yet it is known to sensibly depend on a variety of internal and external material and sample properties. In this work, we apply combined angle- and polarization-resolved spectroscopy to explore the interplay of excitonic physics and phenomena arising from the commonly utilized encapsulation procedure on the optical properties of atomically thinMoSe2. We probe monolayers prepared in both suspended and encapsulated manners. We show that the hBN encapsulation significantly enhances the linear polarization of exciton photoluminescence emission at large emission angles. This degree of linear polarization of excitons can increase up to∼<#comment/>17%<#comment/>in the hBN encapsulated samples. As we confirm by finite-difference time-domain simulations, it can be directly connected to the optical anisotropy of the hBN layers. In comparison, the linear polarization at finite exciton momenta is significantly reduced in a suspendedMoSe2monolayer, and becomes notable only in cryogenic conditions. This phenomenon strongly suggests that the effect is rooted in the k-dependent anisotropic exchange coupling inherent in 2D excitons. Our results have strong implications on further studies on valley contrasting selection rules and valley coherence phenomena using standard suspended and encapsulated samples.

    more » « less
  5. The rare-earth tritellurides (RTe 3 ) are a distinct class of 2D layered materials that recently gained significant attention due to hosting such quantum collective phenomena as superconductivity or charge density waves (CDWs). Many members of this van der Waals (vdW) family crystals exhibit CDW behavior at room temperature, i.e. , RTe 3 compound where R = La, Ce, Pr, Nd, Sm, Gd, and Tb. Here, our systematic studies establish the CDW properties of RTe 3 when the vdW spacing/interaction strength between adjacent RTe 3 layers is engineered under extreme hydrostatic pressures. Using a non-destructive spectroscopy technique, pressure-dependent Raman studies first establish the pressure coefficients of phonon and CDW amplitude modes for a variety of RTe 3 materials, including LaTe 3 , CeTe 3 , PrTe 3 , NdTe 3 , SmTe 3 , GdTe 3 , and TbTe 3 . Results further show that the CDW phase is eventually suppressed at high pressures when the interlayer spacing is reduced and interaction strength is increased. Comparison between different RTe 3 materials shows that LaTe 3 with the largest thermodynamic equilibrium interlayer spacing (smallest chemical pressure) exhibits the most stable CDW phases at high pressures. In contrast, CDW phases in late RTe 3 systems with the largest internal chemical pressures are suppressed easily with applied pressure. Overall results provide comprehensive insights into the CDW response of the entire RTe 3 series under extreme pressures, offering an understanding of CDW formation/engineering in a unique class of vdW RTe 3 material systems. 
    more » « less