skip to main content

This content will become publicly available on August 1, 2023

Title: Synthesis, chiral crystal structure, and magnetic properties of Ba 3 Ga 2 O 5 Cl 2
A new compound, Ba 3 Ga 2 O 5 Cl 2 , isostructural with Ba 3 Fe 2 O 5 Cl 2 , was synthesized by solid-state reaction in air. Through single-crystal and powder X-ray diffraction analysis, the crystal structure was determined to be cubic with chiral space group I 2 1 3 and unit-cell parameter a  = 9.928 (1) Å. The Ga 3+ ions in Ba 3 Ga 2 O 5 Cl 2 are coordinated by O atoms and form GaO 4 tetrahedra. Ten neighboring GaO 4 tetrahedra are further bridged through corner sharing and rotation along the body diagonal, producing the chiral structure. Magnetization measurements indicate temperature-independent diamagnetic behavior, which is qualitatively consistent with core diamagnetism from all the constituent elements.
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials
Page Range or eLocation-ID:
589 to 592
Sponsoring Org:
National Science Foundation
More Like this
  1. The investigation of the coordination chemistry of rare-earth metal complexes with cyanide ligands led to the isolation and crystallographic characterization of the Ln III cyanotriphenylborate complexes dichlorido(cyanotriphenylborato-κ N )tetrakis(tetrahydrofuran-κ O )lanthanide(III), [ Ln Cl 2 (C 19 H 15 BN)(C 4 H 8 O) 4 ] [lanthanide ( Ln ) = dysprosium (Dy) and yttrium Y)] from reactions of LnCl 3 , KCN, and NaBPh 4 . Attempts to independently synthesize the tetraethylammonium salt of (NCBPh 3 ) − from BPh 3 and [NEt 4 ][CN] in THF yielded crystals of the phenyl-substituted cyclic borate, tetraethylazanium 2,2,4,6-tetraphenyl-1,3,5,2λ 4 ,4,6-trioxatriborinan-2-ide, C 8 H 20 N + ·C 24 H 20 B 3 O 3 − or [NEt 4 ][B 3 (μ-O) 3 (C 6 H 5 ) 4 ]. The mechanochemical reaction of BPh 3 and [NEt 4 ][CN] without solvent produced crystals of tetraethylazanium cyanodiphenyl-λ 4 -boranyl diphenylborinate, C 8 H 20 N + ·C 25 H 20 B 2 NO − or [NEt 4 ][NCBPh 2 (μ-O)BPh 2 ]. Reaction of BPh 3 and KCN in THF in the presence of 2.2.2-cryptand (crypt) led to a crystal of bis[(2.2.2-cryptand)potassium] 2,2,4,6-tetraphenyl-1,3,5,2λ 4 ,4,6-trioxatriborinan-2-ide cyanomethyldiphenylborate tetrahydrofuran disolvate, 2C 18 H 36more »KN 2 O 6 + ·C 24 H 20 B 3 O 3 − ·C 14 H 13 BN − ·2C 4 H 8 O or [K(crypt)] 2 [B 3 (μ-O) 3 (C 6 H 5 ) 4 ][NCBPh 2 Me]·2THF. The [NCBPh 2 (μ-O)BPh 2 ] 1− and (NCBPh 2 Me) 1− anions have not been structurally characterized previously. The structure of 1-Y was refined as a two-component twin with occupancy factors 0.513 (1) and 0.487 (1). In 4 , one solvent molecule was disordered and included using multiple components with partial site-occupancy factors.« less
  2. Interest in O 2 -dependent aliphatic carbon–carbon (C–C) bond cleavage reactions of first row divalent metal diketonate complexes stems from the desire to further understand the reaction pathways of enzymes such as DKE1 and to extract information to develop applications in organic synthesis. A recent report of O 2 -dependent aliphatic C–C bond cleavage at ambient temperature in Ni( ii ) diketonate complexes supported by a tridentate nitrogen donor ligand [(MBBP)Ni(PhC(O)CHC(O)Ph)]Cl ( 7-Cl ; MBBP = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine) in the presence of NEt 3 spurred our interest in further examining the chemistry of such complexes. A series of new TERPY-ligated Ni( ii ) diketonate complexes of the general formula [(TERPY)Ni(R 2 -1,3-diketonate)]ClO 4 ( 1 : R = CH 3 ; 2 : R = C(CH 3 ) 3 ; 3 : R = Ph) was prepared under air and characterized using single crystal X-ray crystallography, elemental analysis, 1 H NMR, ESI-MS, FTIR, and UV-vis. Analysis of the reaction mixtures in which these complexes were generated using 1 H NMR and ESI-MS revealed the presence of both the desired diketonate complex and the bis-TERPY derivative [(TERPY) 2 Ni](ClO 4 ) 2 ( 4 ). Through selective crystallization 1–3 were isolated inmore »analytically pure form. Analysis of reaction mixtures leading to the formation of the MBBP analogs [(MBBP)Ni(R 2 -1,3-diketonate)]X (X = ClO 4 : 5 : R = CH 3 ; 6 : R = C(CH 3 ) 3 ; 7-ClO4 : R = Ph; X = Cl: 7-Cl : R = Ph) using 1 H NMR and ESI-MS revealed the presence of [(MBBP) 2 Ni](ClO 4 ) 2 ( 8 ). Analysis of aerobic acetonitrile solutions of analytically pure 1–3 , 5 and 6 containing NEt 3 and in some cases H 2 O using 1 H NMR and UV-vis revealed evidence for the formation of additional bis-ligand complexes ( 4 and 8 ) but suggested no oxidative diketonate cleavage reactivity. Analysis of the organic products generated from 3 , 7-ClO4 and 7-Cl revealed unaltered dibenzoylmethane. Our results therefore indicate that N 3 -ligated Ni( ii ) complexes of unsubstituted diketonate ligands do not exhibit O 2 -dependent aliphatic C–C bond clevage at room temperature, including in the presence of NEt 3 and/or H 2 O.« less
  3. This Review highlights basic and transition metal conducting and semiconducting oxides. We discuss their material and electronic properties with an emphasis on the crystal, electronic, and band structures. The goal of this Review is to present a current compilation of material properties and to summarize possible uses and advantages in device applications. We discuss Ga 2 O 3 , Al 2 O 3 , In 2 O 3 , SnO 2 , ZnO, CdO, NiO, CuO, and Sc 2 O 3 . We outline the crystal structure of the oxides, and we present lattice parameters of the stable phases and a discussion of the metastable polymorphs. We highlight electrical properties such as bandgap energy, carrier mobility, effective carrier masses, dielectric constants, and electrical breakdown field. Based on literature availability, we review the temperature dependence of properties such as bandgap energy and carrier mobility among the oxides. Infrared and Raman modes are presented and discussed for each oxide providing insight into the phonon properties. The phonon properties also provide an explanation as to why some of the oxide parameters experience limitations due to phonon scattering such as carrier mobility. Thermal properties of interest include the coefficient of thermal expansion, Debye temperature,more »thermal diffusivity, specific heat, and thermal conductivity. Anisotropy is evident in the non-cubic oxides, and its impact on bandgap energy, carrier mobility, thermal conductivity, coefficient of thermal expansion, phonon modes, and carrier effective mass is discussed. Alloys, such as AlGaO, InGaO, (Al x In y Ga 1− x− y ) 2 O 3 , ZnGa 2 O 4 , ITO, and ScGaO, were included where relevant as they have the potential to allow for the improvement and alteration of certain properties. This Review provides a fundamental material perspective on the application space of semiconducting oxide-based devices in a variety of electronic and optoelectronic applications.« less
  4. BCl 3 is an attractive plasma etchant for oxides because it is a Lewis acid used to scavenge native oxides on many semiconductors due to the strong B–O bonding. We investigated BCl 3 -based dry etching of the NiO/Ga 2 O 3 heterojunction system. BCl 3 /Ar Inductively Coupled Plasmas produced maximum etch rates for NiO up to 300 Å.min −1 and 800 Å.min −1 for β -Ga 2 O 3 under moderate plasma power conditions suitable for low damage pattern transfer. The selectivity for NiO: Ga 2 O 3 was <1 under all conditions. The ion energy threshold for initiation of etching of NiO was between 35–60 eV, depending on the condition and the etch mechanism was ion-driven, as determined by the linear dependence of etch rate on the square root of ion energy incident on the surface. By sharp contrast, the etching of Ga 2 O 3 had a stronger chemical component, without a well-defined ion energy threshold. The as-etched NiO and Ga 2 O 3 surfaces show chlorine residues, which can be removed on both materials by the standard 1NH 4 OH: 10H 2 O or 1HCl: 10H 2 O rinses used for native oxide removal. Accordingmore »to the location of the Cl 2p 3/2 peak, the Cl is ionically bonded.« less
  5. We report the hydrothermal syntheses and crystal structures of aquabis(2,2′-bipyridine-κ 2 N , N ′)copper(II) hexafluoridosilicate tetrahydrate, [Cu(bpy) 2 (H 2 O)][SiF 6 ]·4H 2 O (bpy is 2,2′-bipyridine, C 10 H 8 N 2 ), (I), bis(2,2′-bipyridine-3κ 2 N , N ′)-di-μ-fluorido-1:3κ 2 F : F ;2:3κ 2 F : F -decafluorido-1κ 5 F ,2κ 5 F -ditantalum(V)copper(II), [Cu(bpy) 2 (TaF 6 ) 2 ], (II), tris(2,2′-bipyridine-κ 2 N , N ′)copper(II) bis[hexafluoridotantalate(V)], [Cu(bpy) 3 ][TaF 6 ] 2 , (III), and catena -poly[[diaqua(2,2′-bipyridine-κ 2 N , N ′)copper(II)]-μ-fluorido-tetrafluoridotin-μ-fluorido], [Cu(bpy)(H 2 O) 2 SnF 6 ] n , (IV). Compounds (I), (II) and (III) contain locally chiral copper coordination complexes with C 2 , D 2 , and D 3 symmetry, respectively. The extended structures of (I) and (IV) are consolidated by O—H...F and O—H...O hydrogen bonds. The structure of (III) was found to be a merohedral (racemic) twin.