skip to main content

This content will become publicly available on March 1, 2023

Title: A review of band structure and material properties of transparent conducting and semiconducting oxides: Ga 2 O 3 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , CdO, NiO, CuO, and Sc 2 O 3
This Review highlights basic and transition metal conducting and semiconducting oxides. We discuss their material and electronic properties with an emphasis on the crystal, electronic, and band structures. The goal of this Review is to present a current compilation of material properties and to summarize possible uses and advantages in device applications. We discuss Ga 2 O 3 , Al 2 O 3 , In 2 O 3 , SnO 2 , ZnO, CdO, NiO, CuO, and Sc 2 O 3 . We outline the crystal structure of the oxides, and we present lattice parameters of the stable phases and a discussion of the metastable polymorphs. We highlight electrical properties such as bandgap energy, carrier mobility, effective carrier masses, dielectric constants, and electrical breakdown field. Based on literature availability, we review the temperature dependence of properties such as bandgap energy and carrier mobility among the oxides. Infrared and Raman modes are presented and discussed for each oxide providing insight into the phonon properties. The phonon properties also provide an explanation as to why some of the oxide parameters experience limitations due to phonon scattering such as carrier mobility. Thermal properties of interest include the coefficient of thermal expansion, Debye temperature, more » thermal diffusivity, specific heat, and thermal conductivity. Anisotropy is evident in the non-cubic oxides, and its impact on bandgap energy, carrier mobility, thermal conductivity, coefficient of thermal expansion, phonon modes, and carrier effective mass is discussed. Alloys, such as AlGaO, InGaO, (Al x In y Ga 1− x− y ) 2 O 3 , ZnGa 2 O 4 , ITO, and ScGaO, were included where relevant as they have the potential to allow for the improvement and alteration of certain properties. This Review provides a fundamental material perspective on the application space of semiconducting oxide-based devices in a variety of electronic and optoelectronic applications. « less
Authors:
; ; ; ; ;
Award ID(s):
1808715 2044049
Publication Date:
NSF-PAR ID:
10339267
Journal Name:
Applied Physics Reviews
Volume:
9
Issue:
1
Page Range or eLocation-ID:
011315
ISSN:
1931-9401
Sponsoring Org:
National Science Foundation
More Like this
  1. Gallium oxide (Ga 2 O 3 ) and its most stable modification, monoclinic β-Ga 2 O 3 , is emerging as a primary material for power electronic devices, gas sensors and optical devices due to a high breakdown voltage, large bandgap, and optical transparency combined with electrical conductivity. Growth of β-Ga 2 O 3 is challenging and most methods require very high temperatures. Nanowires of β-Ga 2 O 3 have been investigated extensively as they might be advantageous for devices such as nanowire field effect transistors, and gas sensors benefiting from a large surface to volume ratio, among others. Here, we report a synthesis approach using a sulfide precursor (Ga 2 S 3 ), which requires relatively low substrate temperatures and short growth times to produce high-quality single crystalline β-Ga 2 O 3 nanowires in high yields. Even though Au- or Ag-rich nanoparticles are invariably observed at the nanowire tips, they merely serve as nucleation seeds while the nanowire growth proceeds via supply and local oxidation of gallium at the substrate interface. Absorption and cathodoluminescence spectroscopy on individual nanowires confirms a wide bandgap of 4.63 eV and strong luminescence with a maximum ∼2.7 eV. Determining the growth process, morphology, compositionmore »and optoelectronic properties on the single nanowire level is key to further application of the β-Ga 2 O 3 nanowires in electronic devices.« less
  2. A review is given of reported trap states in the bandgaps of different polymorphs of the emerging ultrawide bandgap semiconductor Ga2O3. The commonly observed defect levels span the entire bandgap range in the three stable (β) or meta-stable polymorphs (α and ɛ) and are assigned either to impurities such as Fe or to native defects and their complexes. In the latter case, the defects can occur during crystal growth or by exposure to radiation. Such crystalline defects can adversely affect material properties critical to device operation of transistors and photodetectors, including gain, optical output, threshold voltage by reducing carrier mobility, and effective carrier concentration. The trapping effects lead to degraded device operating speed and are characterized by long recovery transients. There is still significant work to be done to correlate experimental results based on deep level transient spectroscopy and related optical spectroscopy techniques to density functional theory and the dominant impurities present in the various synthesis methods to understand the microscopic nature of defects in Ga2O3.

  3. We report on growth and electrical properties of α-Ga2O3films prepared by halide vapor phase epitaxy (HVPE) at 500 °C on α-Cr2O3buffers predeposited on sapphire by magnetron sputtering. The α-Cr2O3buffers showed a wide microcathodoluminescence (MCL) peak near 350 nm corresponding to the α-Cr2O3bandgap and a sharp MCL line near 700 nm due to the Cr+intracenter transition. Ohmic contacts to Cr2O3were made with both Ti/Au or Ni, producing linear current–voltage ( I– V) characteristics over a wide temperature range with an activation energy of conductivity of ∼75 meV. The sign of thermoelectric power indicated p-type conductivity of the buffers. Sn-doped, 2- μm-thick α-Ga2O3films prepared on this buffer by HVPE showed donor ionization energies of 0.2–0.25 eV, while undoped films were resistive with the Fermi level pinned at ECof 0.3 eV. The I– V and capacitance–voltage ( C– V) characteristics of Ni Schottky diodes on Sn-doped samples using a Cr2O3buffer indicated the presence of two face-to-face junctions, one between n-Ga2O3and p-Cr2O3, the other due to the Ni Schottky diode with n-Ga2O3. The spectral dependence of the photocurrent measured on the structure showed the presence of three major deep traps with optical ionization thresholds near 1.3, 2, and 2.8 eV. Photoinduced current transient spectroscopy spectra of the structures were dominated bymore »deep traps with an ionization energy of 0.95 eV. These experiments suggest another pathway to obtain p–n heterojunctions in the α-Ga2O3system.

    « less
  4. In this work, the structural and electrical properties of metalorganic chemical vapor deposited Si-doped β-(Al x Ga 1−x ) 2 O 3 thin films grown on (010) β-Ga 2 O 3 substrates are investigated as a function of Al composition. The room temperature Hall mobility of 101 cm 2 /V s and low temperature peak mobility (T = 65 K) of 1157 cm 2 /V s at carrier concentrations of 6.56 × 10 17 and 2.30 × 10 17  cm −3 are measured from 6% Al composition samples, respectively. The quantitative secondary ion mass spectroscopy (SIMS) characterization reveals a strong dependence of Si and other unintentional impurities, such as C, H, and Cl concentrations in β-(Al x Ga 1−x ) 2 O 3 thin films, with different Al compositions. Higher Al compositions in β-(Al x Ga 1−x ) 2 O 3 result in lower net carrier concentrations due to the reduction of Si incorporation efficiency and the increase of C and H impurity levels that act as compensating acceptors in β-(Al x Ga 1−x ) 2 O 3 films. Lowering the growth chamber pressure reduces Si concentrations in β-(Al x Ga 1−x ) 2 O 3 films due to the increase of Al compositions as evidenced by comprehensive SIMS and Hallmore »characterizations. Due to the increase of lattice mismatch between the epifilm and substrate, higher Al compositions lead to cracking in β-(Al x Ga 1−x ) 2 O 3 films grown on β-Ga 2 O 3 substrates. The (100) cleavage plane is identified as a major cracking plane limiting the growth of high-quality Si-doped (010) β-(Al x Ga 1−x ) 2 O 3 films beyond the critical thicknesses, which leads to highly anisotropic and inhomogeneous behaviors in terms of conductivity.« less
  5. We present a review of the published experimental and simulation radiation damage results in Ga 2 O 3 . All of the polytypes of Ga 2 O 3 are expected to show similar radiation resistance as GaN and SiC, considering their average bond strengths. However, this is not enough to explain the orders of magnitude difference of the relative resistance to radiation damage of these materials compared to GaAs and dynamic annealing of defects is much more effective in Ga 2 O 3 . It is important to examine the effect of all types of radiation, given that Ga 2 O 3 devices will potentially be deployed both in space and terrestrial applications. Octahedral gallium monovacancies are the main defects produced under most radiation conditions because of the larger cross-section for interaction compared to oxygen vacancies. Proton irradiation introduces two main paramagnetic defects in Ga 2 O 3 , which are stable at room temperature. Charge carrier removal can be explained by Fermi-level pinning far from the conduction band minimum due to gallium interstitials (Ga i ), vacancies (V Ga ), and antisites (Ga O ). One of the most important parameters to establish is the carrier removal rate formore »each type of radiation, since this directly impacts the current in devices such as transistors or rectifiers. When compared to the displacement damage predicted by the Stopping and Range of Ions in Matter(SRIM) code, the carrier removal rates are generally much lower and take into account the electrical nature of the defects created. With few experimental or simulation studies on single event effects (SEE) in Ga 2 O 3 , it is apparent that while other wide bandgap semiconductors like SiC and GaN are robust against displacement damage and total ionizing dose, they display significant vulnerability to single event effects at high Linear Energy Transfer (LET) and at much lower biases than expected. We have analyzed the transient response of β -Ga 2 O 3 rectifiers to heavy-ion strikes via TCAD simulations. Using field metal rings improves the breakdown voltage and biasing those rings can help control the breakdown voltage. Such biased rings help in the removal of the charge deposited by the ion strike.« less