skip to main content


Title: Scattering Delay Mitigation in High-accuracy Pulsar Timing: Cyclic Spectroscopy Techniques
Abstract

We simulate scattering delays from the interstellar medium to examine the effectiveness of three estimators in recovering these delays in pulsar timing data. Two of these estimators use the more traditional process of fitting autocorrelation functions to pulsar dynamic spectra to extract scintillation bandwidths, while the third estimator uses the newer technique of cyclic spectroscopy on baseband pulsar data to recover the interstellar medium’s impulse response function. We find that either fitting a Lorentzian or Gaussian distribution to an autocorrelation function or recovering the impulse response function from the cyclic spectrum are, on average, accurate in recovering scattering delays, although autocorrelation function estimators have a large variance, even at high signal-to-noise ratio (S/N). We find that, given sufficient S/N, cyclic spectroscopy is more accurate than both Gaussian and Lorentzian fitting for recovering scattering delays at specific epochs, suggesting that cyclic spectroscopy is a superior method for scattering estimation in high-quality data.

 
more » « less
Award ID(s):
2020265
NSF-PAR ID:
10399183
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
944
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 191
Size(s):
["Article No. 191"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Radio pulsar signals are significantly perturbed by their propagation through the ionized interstellar medium. In addition to the frequency-dependent pulse times of arrival due to dispersion, pulse shapes are also distorted and shifted, having been scattered by the inhomogeneous interstellar plasma, affecting pulse arrival times. Understanding the degree to which scattering affects pulsar timing is important for gravitational-wave detection with pulsar timing arrays (PTAs), which depend on the reliability of pulsars as stable clocks with an uncertainty of ∼100 ns or less over ∼10 yr or more. Scattering can be described as a convolution of the intrinsic pulse shape with an impulse response function representing the effects of multipath propagation. In previous studies, the technique of cyclic spectroscopy has been applied to pulsar signals to deconvolve the effects of scattering from the original emitted signals, increasing the overall timing precision. We present an analysis of simulated data to test the quality of deconvolution using cyclic spectroscopy over a range of parameters characterizing interstellar scattering and pulsar signal-to-noise ratio (S/N). We show that cyclic spectroscopy is most effective for high S/N and/or highly scattered pulsars. We conclude that cyclic spectroscopy could play an important role in scattering correction to distant populations of highly scattered pulsars not currently included in PTAs. For future telescopes and for current instruments such as the Green Bank Telescope upgraded with the ultrawide bandwidth receiver, cyclic spectroscopy could potentially double the number of PTA-quality pulsars. 
    more » « less
  2. ABSTRACT

    The parabolic structure of the secondary or conjugate spectra of pulsars is often the result of isolated one-dimensional (or at least highly anisotropic) lenses in the interstellar medium (ISM). The curvature of these features contains information about the velocities of the Earth, ISM, and pulsar along the primary axis of the lens. As a result, measuring variations in the curvature over the course of a year, or the orbital period for pulsars in binaries, can constrain properties of the screen and pulsar. In particular, the pulsar distance and orbital inclination for binary systems can be found for multiple screens or systems with prior information on sin(i). By mapping the conjugate spectra into a space where the main arc and inverted arclets are straight lines, we are able to make use of the full information content from the inverted arclet curvatures, amplitudes, and phases using eigenvectors to uniquely and optimally retrieve phase information. This allows for a higher precision measurement than the standard Hough transform for systems where these features are available. Our technique also directly yields the best-fitting one-dimensional impulse response function for the interstellar lens given in terms of the Doppler shift, time delay, and magnification of images on the sky as seen from a single observatory. This can be extended for use in holographic imaging of the lens by combining multiple telescopes. We present examples of this new method for both simulated data and actual observations of PSR B0834+06.

     
    more » « less
  3. Abstract

    Broadband radio waves emitted from pulsars are distorted and delayed as they propagate toward the Earth due to interactions with the free electrons that compose the interstellar medium (ISM), with lower radio frequencies being more impacted than higher frequencies. Multipath propagation in the ISM results in both later times of arrival for the lower frequencies and causes the observed pulse to arrive with a broadened tail described via the pulse broadening function. We employ the CLEAN deconvolution technique to recover the pulse broadening timescale and by proxy the intrinsic pulse shape. This work expands upon previous descriptions of CLEAN deconvolution used in pulse broadening analyses by parameterizing the efficacy on simulated data and developing a suite of tests to establish which of a set of figures of merit leads to an automatic and consistent determination of the scattering timescale and its uncertainty. We compare our algorithm to the cyclic spectroscopy method of estimating the scattering timescale, specifically to the simulations performed in Dolch et al. (2021). We test our improved algorithm on the highly scattered millisecond pulsar J1903+0327, showing the scattering timescale to change over years, consistent with estimates of the refractive timescale of the pulsar.

     
    more » « less
  4. Abstract

    Home range estimation is routine practice in ecological research. While advances in animal tracking technology have increased our capacity to collect data to support home range analysis, these same advances have also resulted in increasingly autocorrelated data. Consequently, the question of which home range estimator to use on modern, highly autocorrelated tracking data remains open. This question is particularly relevant given that most estimators assume independently sampled data. Here, we provide a comprehensive evaluation of the effects of autocorrelation on home range estimation. We base our study on an extensive data set ofGPSlocations from 369 individuals representing 27 species distributed across five continents. We first assemble a broad array of home range estimators, including Kernel Density Estimation (KDE) with four bandwidth optimizers (Gaussian reference function, autocorrelated‐Gaussian reference function [AKDE], Silverman's rule of thumb, and least squares cross‐validation), Minimum Convex Polygon, and Local Convex Hull methods. Notably, all of these estimators exceptAKDEassume independent and identically distributed (IID) data. We then employ half‐sample cross‐validation to objectively quantify estimator performance, and the recently introduced effective sample size for home range area estimation () to quantify the information content of each data set. We found thatAKDE95% area estimates were larger than conventionalIID‐based estimates by a mean factor of 2. The median number of cross‐validated locations included in the hold‐out sets byAKDE95% (or 50%) estimates was 95.3% (or 50.1%), confirming the largerAKDEranges were appropriately selective at the specified quantile. Conversely, conventional estimates exhibited negative bias that increased with decreasing . To contextualize our empirical results, we performed a detailed simulation study to tease apart how sampling frequency, sampling duration, and the focal animal's movement conspire to affect range estimates. Paralleling our empirical results, the simulation study demonstrated thatAKDEwas generally more accurate than conventional methods, particularly for small . While 72% of the 369 empirical data sets had >1,000 total observations, only 4% had an >1,000, where 30% had an <30. In this frequently encountered scenario of small ,AKDEwas the only estimator capable of producing an accurate home range estimate on autocorrelated data.

     
    more » « less
  5. Abstract

    Land surface air temperatures (LSAT) inferred from weather station data differ among major research groups. The estimate by NOAA’s monthly Global Historical Climatology Network (GHCNm) averages 0.02°C cooler between 1880 and 1940 than Berkeley Earth’s and 0.14°C cooler than the Climate Research Unit estimates. Such systematic offsets can arise from differences in how poorly documented changes in measurement characteristics are detected and adjusted. Building upon an existing pairwise homogenization algorithm used in generating the fourth version of NOAA’s GHCNm(V4), PHA0, we propose two revisions to account for autocorrelation in climate variables. One version, PHA1, makes minimal modification to PHA0by extending the threshold used in breakpoint detection to be a function of LSAT autocorrelation. The other version, PHA2, uses penalized likelihood to detect breakpoints through optimizing a model-selection problem globally. To facilitate efficient optimization for series with more than 1000 time steps, a multiparent genetic algorithm is proposed for PHA2. Tests on synthetic data generated by adding breakpoints to CMIP6 simulations and realizations from a Gaussian process indicate that PHA1and PHA2both similarly outperform PHA0in recovering accurate climatic trends. Applied to unhomogenized GHCNmV4, both revised algorithms detect breakpoints that correspond with available station metadata. Uncertainties are estimated by perturbing algorithmic parameters, and an ensemble is constructed by pooling 50 PHA1- and 50 PHA2-based members. The continental-mean warming in this new ensemble is consistent with that of Berkeley Earth, despite using different homogenization approaches. Relative to unhomogenized data, our homogenization increases the 1880–2022 trend by 0.16 [0.12, 0.19]°C century−1(95% confidence interval), leading to continental-mean warming of 1.65 [1.62, 1.69]°C over 2010–22 relative to 1880–1900.

    Significance Statement

    Accurately correcting for systematic errors in observational records of land surface air temperature (LSAT) is critical for quantifying historical warming. Existing LSAT estimates are subject to systematic offsets associated with processes including changes in instrumentation and station movement. This study improves a pairwise homogenization algorithm by accounting for the fact that climate signals are correlated over time. The revised algorithms outperform the original in identifying discontinuities and recovering accurate warming trends. Applied to monthly station temperatures, the revised algorithms adjust trends in continental mean LSAT since the 1880s to be 0.16°C century−1greater relative to raw data. Our estimate is most consistent with that from Berkeley Earth and indicates lesser and greater warming than estimates from NOAA and the Met Office, respectively.

     
    more » « less