From 1875 to 1878, concurrent multiyear droughts in Asia, Brazil, and Africa, referred to as the Great Drought, caused widespread crop failures, catalyzing the so-called Global Famine, which had fatalities exceeding 50 million people and long-lasting societal consequences. Observations, paleoclimate reconstructions, and climatemodel simulations are used 1) to demonstrate the severity and characterize the evolution of drought across different regions, and 2) to investigate the underlying mechanisms driving its multiyear persistence. Severe or record-setting droughts occurred on continents in both hemispheres and in multiple seasons, with the ‘‘Monsoon Asia’’ region being the hardest hit, experiencing the single most intense and the second most expansive drought in the last 800 years. The extreme severity, duration, and extent of this global event is associated with an extraordinary combination of preceding cool tropical Pacific conditions (1870–76), a record-breaking El Niño (1877–78), a record strong Indian Ocean dipole (1877), and record warm North Atlantic Ocean (1878) conditions. Composites of historical analogs and two sets of ensemble simulations—one forced with global sea surface temperatures (SSTs) and another forced with tropical Pacific SSTs—were used to distinguish the role of the extreme conditions in different ocean basins. While the drought in most regions was largely driven by the tropical Pacific SST conditions, an extreme positive phase of the Indian Ocean dipole and warm NorthAtlantic SSTs, both likely aided by the strong El Niño in 1877–78, intensified and prolonged droughts in Australia and Brazil, respectively, and extended the impact to northern and southeastern Africa. Climatic conditions that caused the Great Drought and Global Famine arose from natural variability, and their recurrence, with hydrological impacts intensified by global warming, could again potentially undermine global food security.
more »
« less
A Century of Drought in Hawaiʻi: Geospatial Analysis and Synthesis across Hydrological, Ecological, and Socioeconomic Scales
Drought is a prominent feature of Hawaiʻi’s climate. However, it has been over 30 years since the last comprehensive meteorological drought analysis, and recent drying trends have emphasized the need to better understand drought dynamics and multi-sector effects in Hawaiʻi. Here, we provide a comprehensive synthesis of past drought effects in Hawaiʻi that we integrate with geospatial analysis of drought characteristics using a newly developed 100-year (1920–2019) gridded Standardized Precipitation Index (SPI) dataset. The synthesis examines past droughts classified into five categories: Meteorological, agricultural, hydrological, ecological, and socioeconomic drought. Results show that drought duration and magnitude have increased significantly, consistent with trends found in other Pacific Islands. We found that most droughts were associated with El Niño events, and the two worst droughts of the past century were multi-year events occurring in 1998–2002 and 2007–2014. The former event was most severe on the islands of O’ahu and Kaua’i while the latter event was most severe on Hawaiʻi Island. Within islands, we found different spatial patterns depending on leeward versus windward contrasts. Droughts have resulted in over $80 million in agricultural relief since 1996 and have increased wildfire risk, especially during El Niño years. In addition to providing the historical context needed to better understand future drought projections and to develop effective policies and management strategies to protect natural, cultural, hydrological, and agricultural resources, this work provides a framework for conducting drought analyses in other tropical island systems, especially those with a complex topography and strong climatic gradients.
more »
« less
- Award ID(s):
- 2149133
- PAR ID:
- 10399628
- Date Published:
- Journal Name:
- Sustainability
- Volume:
- 14
- Issue:
- 19
- ISSN:
- 2071-1050
- Page Range / eLocation ID:
- 12023
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
South American (SA) societies are highly vulnerable to droughts and pluvials, but lack of long-term climate observations severely limits our understanding of the global processes driving climatic variability in the region. The number and quality of SA climate-sensitive tree ring chronologies have significantly increased in recent decades, now providing a robust network of 286 records for characterizing hydroclimate variability since 1400 CE. We combine this network with a self-calibrated Palmer Drought Severity Index (scPDSI) dataset to derive the South American Drought Atlas (SADA) over the continent south of 12°S. The gridded annual reconstruction of austral summer scPDSI is the most spatially complete estimate of SA hydroclimate to date, and well matches past historical dry/wet events. Relating the SADA to the Australia–New Zealand Drought Atlas, sea surface temperatures and atmospheric pressure fields, we determine that the El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) are strongly associated with spatially extended droughts and pluvials over the SADA domain during the past several centuries. SADA also exhibits more extended severe droughts and extreme pluvials since the mid-20th century. Extensive droughts are consistent with the observed 20th-century trend toward positive SAM anomalies concomitant with the weakening of midlatitude Westerlies, while low-level moisture transport intensified by global warming has favored extreme rainfall across the subtropics. The SADA thus provides a long-term context for observed hydroclimatic changes and for 21st-century Intergovernmental Panel on Climate Change (IPCC) projections that suggest SA will experience more frequent/severe droughts and rainfall events as a consequence of increasing greenhouse gas emissions.more » « less
-
Abstract As extreme climate events are predicted to become more frequent because of global climate change, understanding their impacts on natural systems is crucial. Tropical forests are vulnerable to droughts associated with extreme El Niño events. However, little is known about how tropical seedling communities respond to El Niño–related droughts, even though patterns of seedling survival shape future forest structure and diversity. Using long‐term data from eight tropical moist forests spanning a rainfall gradient in central Panama, we show that community‐wide seedling mortality increased by 11% during the extreme 2015–16 El Niño, with mortality increasing most in drought‐sensitive species and in wetter forests. These results indicate that severe El Niño–related droughts influence understory dynamics in tropical forests, with effects varying both within and across sites. Our findings suggest that predicted increases in the frequency of extreme El Niño events will alter tropical plant communities through their effects on early life stages.more » « less
-
Abstract Understanding the effects of intensification of Amazon basin hydrological cycling—manifest as increasingly frequent floods and droughts—on water and energy cycles of tropical forests is essential to meeting the challenge of predicting ecosystem responses to climate change, including forest “tipping points”. Here, we investigated the impacts of hydrological extremes on forest function using 12+ years of observations (between 2001–2020) of water and energy fluxes from eddy covariance, along with associated ecological dynamics from biometry, at the Tapajós National Forest. Measurements encompass the strong 2015–2016 El Niño drought and La Niña 2008–2009 wet events. We found that the forest responded strongly to El Niño‐Southern Oscillation (ENSO): Drought reduced water availability for evapotranspiration (ET) leading to large increases in sensible heat fluxes (H). PartitioningETby an approach that assumes transpiration (T) is proportional to photosynthesis, we found that water stress‐induced reductions in canopy conductance (Gs) droveTdeclines partly compensated by higher evaporation (E). By contrast, the abnormally wet La Niña period gave higherTand lowerE, with little change in seasonalET. Both El Niño‐Southern Oscillation (ENSO) events resulted in changes in forest structure, manifested as lower wet‐season leaf area index. However, only during El Niño 2015–2016, we observed a breakdown in the strong meteorological control of transpiration fluxes (via energy availability and atmospheric demand) because of slowing vegetation functions (via shutdown ofGsand significant leaf shedding). Drought‐reducedTandGs, higherHandE, amplified by feedbacks with higher temperatures and vapor pressure deficits, signaled that forest function had crossed a threshold, from which it recovered slowly, with delay, post‐drought. Identifying such tipping point onsets (beyond which future irreversible processes may occur) at local scale is crucial for predicting basin‐scale threshold‐crossing changes in forest energy and water cycling, leading to slow‐down in forest function, potentially resulting in Amazon forests shifting into alternate degraded states.more » « less
-
Increased mortality of tropical tree seedlings during the extreme 2015-16 El Niño - dataset and code'Panama-El-Nino-publish.zip' contains all the code and data necessary to reproduce the analyses in the manuscript. Please unzip the file and see README.md for instructions.</div>'rocker-geospatial-rstan.sif' is a Singularity container that comes with all necessary packages pre-installed. Please seed README.md in the 'Panama-El-Nino-publish.zip' file for instructions.</div></div>Abstract</b></div>As extreme climate events are predicted to become more frequent due to global climate change, understanding their impacts on natural systems is crucial. Tropical forests are vulnerable to droughts associated with extreme El Niño events. However, little is known about how tropical seedling communities respond to El Niño-related droughts, even though patterns of seedling survival shape future forest structure and diversity. Using long-term data from eight tropical moist forests spanning a rainfall gradient in central Panama, we show that community-wide seedling mortality increased by 11% during the extreme 2015-16 El Niño, with mortality increasing most in drought sensitive species and in wetter forests. These results indicate that severe El Niño-related droughts influence understory dynamics in tropical forests, with effects varying both within and across sites. Our findings suggest that predicted increases in the frequency of extreme El Niño events will alter tropical plant communities through effects on early life stages.</div></div></div>more » « less
An official website of the United States government

