Abstract Physical experiments and numerical simulations have observed a remarkable stabilizing phenomenon: a background magnetic field stabilizes and dampens electrically conducting fluids. This paper intends to establish this phenomenon as a mathematically rigorous fact on a magnetohydrodynamic (MHD) system with anisotropic dissipation in$$\mathbb R^3$$ . The velocity equation in this system is the 3D Navier–Stokes equation with dissipation only in the$$x_1$$ -direction, while the magnetic field obeys the induction equation with magnetic diffusion in two horizontal directions. We establish that any perturbation near the background magnetic field (0, 1, 0) is globally stable in the Sobolev setting$$H^3({\mathbb {R}}^3)$$ . In addition, explicit decay rates in$$H^2({\mathbb {R}}^3)$$ are also obtained. For when there is no presence of a magnetic field, the 3D anisotropic Navier–Stokes equation is not well understood and the small data global well-posedness in$$\mathbb R^3$$ remains an intriguing open problem. This paper reveals the mechanism of how the magnetic field generates enhanced dissipation and helps to stabilize the fluid. 
                        more » 
                        « less   
                    
                            
                            Perpendicular magnetic anisotropy, tunneling magnetoresistance and spin-transfer torque effect in magnetic tunnel junctions with Nb layers
                        
                    
    
            Abstract Nb and its compounds are widely used in quantum computing due to their high superconducting transition temperatures and high critical fields. Devices that combine superconducting performance and spintronic non-volatility could deliver unique functionality. Here we report the study of magnetic tunnel junctions with Nb as the heavy metal layers. An interfacial perpendicular magnetic anisotropy energy density of 1.85 mJ/m2was obtained in Nb/CoFeB/MgO heterostructures. The tunneling magnetoresistance was evaluated in junctions with different thickness combinations and different annealing conditions. An optimized magnetoresistance of 120% was obtained at room temperature, with a damping parameter of 0.011 determined by ferromagnetic resonance. In addition, spin-transfer torque switching has also been successfully observed in these junctions with a quasistatic switching current density of 7.3$$\times \;10^{5}$$ A/cm2. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1905783
- PAR ID:
- 10399686
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Two-dimensional electron systems subjected to high transverse magnetic fields can exhibit Fractional Quantum Hall Effects (FQHE). In the GaAs/AlGaAs 2D electron system, a double degeneracy of Landau levels due to electron-spin, is removed by a small Zeeman spin splitting,$$g \mu _B B$$ , comparable to the correlation energy. Then, a change of the Zeeman splitting relative to the correlation energy can lead to a re-ordering between spin polarized, partially polarized, and unpolarized many body ground states at a constant filling factor. We show here that tuning the spin energy can produce fractionally quantized Hall effect transitions that include both a change in$$\nu$$ for the$$R_{xx}$$ minimum, e.g., from$$\nu = 11/7$$ to$$\nu = 8/5$$ , and a corresponding change in the$$R_{xy}$$ , e.g., from$$R_{xy}/R_{K} = (11/7)^{-1}$$ to$$R_{xy}/R_{K} = (8/5)^{-1}$$ , with increasing tilt angle. Further, we exhibit a striking size dependence in the tilt angle interval for the vanishing of the$$\nu = 4/3$$ and$$\nu = 7/5$$ resistance minima, including “avoided crossing” type lineshape characteristics, and observable shifts of$$R_{xy}$$ at the$$R_{xx}$$ minima- the latter occurring for$$\nu = 4/3, 7/5$$ and the 10/7. The results demonstrate both size dependence and the possibility, not just of competition between different spin polarized states at the same$$\nu$$ and$$R_{xy}$$ , but also the tilt- or Zeeman-energy-dependent- crossover between distinct FQHE associated with different Hall resistances.more » « less
- 
            AbstractWe report on a series of detailed Breit-Pauli and Dirac B-spline R-matrix (DBSR) differential cross section (DCS) calculations for excitation of the$$5\,^2\textrm{S}_{1/2} \rightarrow 5\,^2\textrm{P}_{1/2}$$ and$$5\,^2\textrm{S}_{1/2}\rightarrow 5\,^2\textrm{P}_{3/2}$$ states in rubidium by 40 eV incident electrons. The early BP computations shown here were carried out with both 5 states and 12 states, while the DBSR models coupled 150 and 325 states, respectively. We also report corresponding results from a limited set of DCS measurements on the unresolved$$5\,^2\textrm{P}_{1/2,3/2}$$ states, with the experimental data being restricted to the scattered electron angular range 2–$$10^\circ $$ . Typically, good agreement is found between our calculated and measured DCS for excitation of the unresolved$$5\,^2\textrm{P}_{1/2,3/2}$$ states, with best accord being found between the DBSR predictions and the measured data. The present theoretical and experimental results are also compared with predictions from earlier 40 eV calculations using the nonrelativistic Distorted-Wave Born Approximation and a Relativistic Distorted-Wave model. Graphic abstractmore » « less
- 
            Abstract Electronic structure and magnetic interactions of a Tb adatom on graphene are investigated from first principles using combination of density functional theory and multiconfigurational quantum chemistry techniques including spin–orbit coupling (SOC) . We determine that the six-fold symmetry hollow site is the preferred adsorption site and investigate electronic spectrum for different adatom oxidation states including Tb3+, Tb2+, Tb1+, and Tb0. For all charge states, the Tb configuration is retained with other adatom valence electrons being distributed over , , and single-electron orbitals. We find strong intra-site adatom exchange coupling that ensures that the spins are parallel to the4fspin. For Tb3+, the energy levels can be described by theJ = 6 multiplet split by the graphene crystal field (CF). For other oxidation states, the interaction of4felectrons with spin and orbital degrees of freedom of electrons in the presence of SOC results in the low-energy spectrum composed closely lying effective multiplets that are split by the graphene CF. Stable magnetic moment is predicted for Tb3+and Tb2+adatoms due to uniaxial magnetic anisotropy and effective anisotropy barrier around 440 cm−1controlled by the temperature assisted quantum tunneling of magnetization through the third excited doublet. On the other hand, in-plane magnetic anisotropy is found for Tb1+and Tb0adatoms. Our results indicate that the occupation of the orbitals can dramatically affect the magnetic anisotropy and magnetic moment stability of rare earth adatoms.more » « less
- 
            Abstract The electricE1 and magneticM1 dipole responses of the$$N=Z$$ nucleus$$^{24}$$ Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the$$^{24}$$ Mg($$\gamma ,\gamma ^{\prime }$$ ) reaction, were delivered by the ELBE accelerator of the Helmholtz-Zentrum Dresden-Rossendorf. The collimated bremsstrahlung photons excited one$$J^{\pi }=1^-$$ , four$$J^{\pi }=1^+$$ , and six$$J^{\pi }=2^+$$ states in$$^{24}$$ Mg. De-excitation$$\gamma $$ rays were detected using the four high-purity germanium detectors of the$$\gamma $$ ELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$ is observed, but this$$N=Z$$ nucleus exhibits only marginalE1 strength of less than$$\sum B(E1)\uparrow \le 0.61 \times 10^{-3}$$ e$$^2 \, $$ fm$$^2$$ . The$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$ branching ratios in combination with the expected results from the Alaga rules demonstrate thatKis a good approximative quantum number for$$^{24}$$ Mg. The use of the known$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$ strength and the measured$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$ branching ratio of the 10.712 MeV$$1^+$$ level allows, in a two-state mixing model, an extraction of the difference$$\varDelta \beta _2^2$$ between the prolate ground-state structure and shape-coexisting superdeformed structure built upon the 6432-keV$$0^+_2$$ level.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
