Vibration energy harvesting is increasingly being seen as a viable energy source to provide for our energy-dependent society. There has been great interest in scavenging previously unused or wasted energy in a large variety of systems including vibrating machinery, ocean waves and human motion. In this work, a bench-top system of a piecewise-linear nonlinear vibration energy harvester is studied. A similar idealized model of the system had previously been studied numerically, and in this work the method is adjusted to better account for the physical system. This new design is able to actively tune the system’s resonant frequency to match the current excitation through the adjustment of the gap size between the oscillator and mechanical stopper; thus maximizing the system response over a broad frequency range. This design shows an increased effective frequency bandwidth compared with traditional linear systems and improves upon current nonlinear designs that are less effective than linear harvesters at resonance. In this paper, the physical system is tested at various excitation conditions and gap sizes to showcase the new harvester design’s effectiveness.
Recently, vibration energy harvesting has been seen as a viable energy source to provide for our energy dependent society. Researchers have studied systems ranging from civil structures like bridges to biomechanical systems including human motion as potential sources of vibration energy. In this work, a bench-top system of a piecewise-linear (PWL) nonlinear vibration harvester is studied. A similar idealized model of the harvester was previously looked at numerically, and in this work the method is adjusted to handle physical systems to construct a realistic harvester design. With the physically realizable harvester design, the resonant frequency of the system is able to be tuned by changing the gap size between the oscillator and mechanical stopper, ensuring optimal performance over a broad frequency range. Current nonlinear harvester designs show decreased performance at certain excitation conditions, but this design overcomes these issues while also still maintaining the performance of a linear harvester at resonance. In this investigation, the system is tested at various excitation conditions and gap sizes. The computational response of the resonance behavior of the PWL system is validated against the experiments. Additionally, the electromechanical response is also validated with the experiments by comparing the output power generated from the experiments with the computational prediction.
more » « less- Award ID(s):
- 1902408
- PAR ID:
- 10399947
- Date Published:
- Journal Name:
- Volume 10: 34th Conference on Mechanical Vibration and Sound (VIB)
- Volume:
- 10
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Vibration energy is becoming a significant alternative solution for energy generation. Recently, a great deal of research has been conducted on how to harvest energy from vibration sources ranging from ocean waves to human motion to microsystems. In this paper, a theoretical model of a piecewise-linear (PWL) nonlinear vibration harvester that has potential applications in variety of fields is proposed and numerically investigated. This new technique enables automatic frequency tunability in the energy harvester by controlling the gap size in the PWL oscillator so that it is able to adapt to changes in excitations. To optimize the performance of the proposed system, a control method combining the response prediction, signal measurement and gap adjustment mechanism is proposed in this paper. This new energy harvester not only overcomes the limitation of traditional linear energy harvesters that can only provide the maximum power generation efficiency over a narrow frequency range but also improves the performance of current nonlinear energy harvesters that are not as efficient as linear energy harvesters at resonance. The proposed system is demonstrated in several case studies to illustrate its effectiveness for a number of different excitations.more » « less
-
In this study, the dynamical and electrical behaviors of an impact-based frequency-up-conversion energy harvester were studied based on discontinuous dynamics theory. This analytical study enables us to better understand the response of an impact-based frequency-up-conversion energy harvester as system parameters change, hence, guiding us to design a high-efficiency energy harvester via optimizing the values of the critical parameters of the system. For a given base excitation, the optimum gap to maximize the output power was obtained. The energy harvester consists of a sinusoidal vibrating piezoelectric bimorph and a stopper. The equations of the piezoelectric bimorph, which was modeled as an Euler–Bernoulli beam, were obtained based on the linear piezoelectric constitutive law. The generated voltage and power of the energy harvester were obtained via discontinuous dynamics analysis. Furthermore, the bifurcation diagrams of period-1 and period-2 motions were presented as the excitation frequency varying. To better understand the effect of different parameters on the performance of our system, the bifurcation trees of the period-1 motion versus varying excitation frequency were analytically obtained for different initial gap distances between the piezoelectric beam and the stopper. In addition, the bifurcation diagram of period solutions with a constant excitation frequency and varying gap distance was also attained.
-
In recent years, great advances in understanding the opportunities for nonlinear vibration energy harvesting systems have been achieved giving attention to either the structural or electrical subsystems. Yet, a notable disconnect appears in the knowledge on optimal means to integrate nonlinear energy harvesting structures with effective nonlinear rectifying and power management circuits for practical applications. Motivated to fill this knowledge gap, this research employs impedance principles to investigate power optimization strategies for a nonlinear vibration energy harvester interfaced with a bridge rectifier and a buck-boost converter. The frequency and amplitude dependence of the internal impedance of the harvester structure challenges the conventional impedance matching concepts. Instead, a system-level optimization strategy is established and validated through simulations and experiments. Through careful studies, the means to optimize the electrical power with partial information of the electrical load is revealed and verified in comparison to the full analysis. These results suggest that future study and implementation of optimal nonlinear energy harvesting systems may find effective guidance through power flow concepts built on linear theories despite the presence of nonlinearities in structures and circuits.
-
Abstract A nonlinear inerter pendulum vibration absorber is integrated with an electromagnetic power take-off system (called IPVA-PTO) and is analyzed for its efficacy in ocean wave energy conversion of a spar platform. The IPVA-PTO system shows a nonlinear energy transfer phenomenon between the spar and the IPVA-PTO which can be used to convert the vibration energy of the spar into electricity while reducing the hydrodynamic response of the spar. The hydrodynamic coefficients of the spar are computed using a commercial boundary-element-method (BEM) code. It is shown that the energy transfer is associated with 1:2 internal resonance of the pendulum vibration absorber, which is induced by a period-doubling bifurcation. The period-doubling bifurcation is studied using the harmonic balance method. A modified alternating frequency/time (AFT) approach is developed to compute the Jacobian matrix involving nonlinear inertial effects of the IPVA-PTO system. It is shown that the period-doubling bifurcation leads to 1:2 internal resonance and plays a major role in the energy transfer between the spar and the pendulum. The response amplitude operator (RAO) in heave and the capture width of the IPVA-PTO-integrated spar are compared with its linear counterpart and it is shown that the IPVA-PTO system outperforms the linear energy harvester as the former has a lower RAO and higher capture width.