Large‐bodied frugivorous birds play an important role in dispersing large‐sized seeds in Neotropical rain forests, thereby maintaining tree species richness and diversity. Conversion of contiguous forest land to forest fragments is thought to be driving population declines in large‐bodied frugivores, but the mechanistic drivers of this decline remain poorly understood. To assess the importance of fragment‐level versus local landscape attributes in influencing the species richness of large‐bodied (>100 g) frugivorous birds, we surveyed 15 focal species in 22 forest fragments (2.7 to 33.6 ha, avg. = 16.0 ha) in northwest Ecuador in 2014. Fragment habitat variables included density of large trees, canopy openness and height, and fragment size; landscape variables included elevation and the proportion of tree cover within a 1 km radius of each fragment. At both the individual species level, and across the community of 12 species of avian frugivore we detected, there was higher richness and probability of presence in fragments with more tree cover on surrounding land. This tendency was particularly pronounced among some endangered species. These findings corroborate the idea that partially forested land surrounding fragments may effectively increase the suitable habitat for forest‐dwelling frugivorous birds in fragmented landscapes. These results can help guide conservation priorities within fragmented landscapes, with particular reference to retaining trees and reforesting to attain high levels of tree cover in areas between forest patches.
- Award ID(s):
- 2010821
- PAR ID:
- 10400003
- Date Published:
- Journal Name:
- PhytoKeys
- Volume:
- 194
- ISSN:
- 1314-2011
- Page Range / eLocation ID:
- 33 to 46
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract River hydrogeomorphology is a major driver shaping biodiversity and community composition. Here, we examine how hydrogeomorphic heterogeneity expressed by Functional Process Zones (FPZs) in river networks is associated with fish assemblage variation. We examined this association in two distinct ecoregions in Mongolia expected to display different gradients of river network hydrogeomorphic heterogeneity. We delineated FPZs by extracting valley‐scale hydrogeomorphic variables at 10 km sample intervals in forest steppe (FS) and in grassland (G) river networks. We sampled fish assemblages and examined variation associated with changes in gradients of hydrogeomorphology as expressed by the FPZs. Thus, we examined assemblage variation as patterns of occurrence‐ and abundance‐based beta diversities for the taxonomic composition of assemblages and as functional beta diversity. Overall, we delineated 5 and 6 FPZs in river networks of the FS and G, respectively. Eight fish species were found in the FS river network and seventeen in the G, four of them common to both ecoregions. Functional richness was correspondingly higher in the G river network. Variation in the taxonomic composition of assemblages was driven by species turnover and was only significant in the G river network. Abundance‐based taxonomic variation was significant in river networks of both ecoregions, while the functional beta diversity results were inconclusive. We show that valley‐scale hydrogeomorphology is a significant driver of variation in fish assemblages at a macrosystem scale. Both changes in the composition of fish assemblages and the carrying capacity of the river network were driven by valley‐scale hydrogeomorphic variables. River network hydrogeomorphology as accounted for in the study has, therefore, the potential to inform macrosystem scale community ecology research and conservation efforts.
-
Abstract Fragmentation transforms the environment along forest edges. The prevailing narrative, driven by research in tropical systems, suggests that edge environments increase tree mortality and structural degradation resulting in net decreases in ecosystem productivity. We show that, in contrast to tropical systems, temperate forest edges exhibit increased forest growth and biomass with no change in total mortality relative to the forest interior. We analyze >48,000 forest inventory plots across the north-eastern US using a quasi-experimental matching design. At forest edges adjacent to anthropogenic land covers, we report increases of 36.3% and 24.1% in forest growth and biomass, respectively. Inclusion of edge impacts increases estimates of forest productivity by up to 23% in agriculture-dominated areas, 15% in the metropolitan coast, and +2% in the least-fragmented regions. We also quantify forest fragmentation globally, at 30-m resolution, showing that temperate forests contain 52% more edge forest area than tropical forests. Our analyses upend the conventional wisdom of forest edges as less productive than intact forest and call for a reassessment of the conservation value of forest fragments.
-
Globally, biodiversity has declined at an unprecedented rate, challenging the viability of ecosystems, species, and ecological functions and their corresponding services. Payments for ecosystem services (PES) programs have been established and implemented worldwide to combat the degradation or loss of essential ecosystems and ecosystem services with-out sacrificing the well-being of people. With an overarching goal of reducing soil ero-sion, China’s Grain-to-Green program (GTGP) converts cropland to forest or grassland. As one of the largest PES programs in the world, GTGP has great potential to offer biodi-versity conservation co-benefits. To consider how GTGP may influence biodiversity, we measured forest structure and plant and wildlife species diversity at both GTGP forest and natural forest sites in Fangjingshan National Nature Reserve, China. We also evaluated the relationship between canopy cover and biodiversity measures to test whether forest cover, the most commonly measured and reported ecological metric of PES programs, might act as a good proxy for other biodiversity related parameters. We found that forest cover and species diversity increased after GTGP implementation as understory and overstory plant cover, and understory and midstory plant diversity at GTGP sites were similar to natural forest. Our results suggest that GTGP may also have been associated with increased habitat for protected and vulnerable wildlife species including Elliot’s pheasant (Syrmaticus elli-oti), hog badger (Arctonyx collaris), and wild boar (Sus scrofa). Nevertheless, we identi-fied key differences between GTGP forest and natural forest, particularly variation in forest types and heterogeneity of overstory vegetation. As a result, plant overstory diversity and wildlife species richness at GTGP forest were significantly lower than at natural forest. Our findings suggest, while forest cover may be a good proxy for some metrics of forest struc-ture, it does not serve as a robust proxy for many biodiversity parameters. These findings highlight the need for and importance of robust and representative indicators or proxy vari-ables for measuring ecological effects of PES programs on compositional and structural diversity. We demonstrate that PES may lead to biodiversity co-benefits, but changes in program implementation could improve the return on investment of PES programs to sup-port conservation of biodiversity.more » « less
-
Abstract In the context of global decline in old‐growth forest, historical ecology is a valuable tool to derive insights into vegetation legacies and dynamics and develop new conservation and restoration strategies. In this cross‐disciplinary study, we integrate palynology (Lago del Pesce record), history, dendrochronology, and historical and contemporary land cover maps to assess drivers of vegetation change over the last millennium in a Mediterranean mountain forest (Pollino National Park, southern Italy) and discuss implications in conservation ecology. The study site hosts a remnant beech–fir (
Fagus sylvatica –Abies alba ) mixed forest, a priority habitat for biodiversity conservation in Europe. In the 10th century, the pollen record showed an open environment that was quickly colonized by silver fir when sociopolitical instabilities reduced anthropogenic pressures in mountain forests. The highest forest cover and biomass was reached between the 14th and the 17th centuries following land abandonment due to recurring plague pandemics. This rewilding process is also reflected in the recruitment history of Bosnian pine (Pinus heldreichii ) in the subalpine elevation belt. Our results show that human impacts have been one of the main drivers of silver fir population contraction in the last centuries in the Mediterranean, and that the removal of direct human pressure led to ecosystem renovation. Since 1910, the Rubbio State Forest has locally protected and restored the mixed beech–fir forest. The institutions in 1972 for the Rubbio Natural Reserve and in 1993 for Pollino National Park have guaranteed the survival of the silver fir population, demonstrating the effectiveness of targeted conservation and restoration policies despite a warming climate. Monitoring silver fir populations can measure the effectiveness of conservation measures. In the last decades, the abandonment of rural environments (rewilding) along the mountains of southern Italy has reduced the pressure on ecosystems, thus boosting forest expansion. However, after four decades of natural regeneration and increasing biomass, pollen influx and forest composition are still far from the natural attributes of the medieval forest ecosystem. We conclude that long‐term forest planning encouraging limited direct human disturbance will lead toward rewilding and renovation of carbon‐rich and highly biodiverse Mediterranean old‐growth forests, which will be more resistant and resilient to future climate change.