skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Navigating Dennard, Carbon and Moore: Scenarios for the Future of NSF Advanced Computational Infrastructure
After a long period of steady improvement, scientific computing equipment (SCE, or HPC) is being disrupted by the end of Dennard scaling, the slowing of Moore's Law, and new challenges to reduce carbon, to fight climate change. What does this mean for the future? We develop a system and portfolio model based on historical NSF XSEDE site systems and apply it to examine potential technology scenarios and what they mean for future compute capacity, power consumption, carbon emissions, datacenter siting, and more.  more » « less
Award ID(s):
2019506
PAR ID:
10400418
Author(s) / Creator(s):
;
Date Published:
Journal Name:
PEARC '22: Practice and Experience in Advanced Research Computing
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Carbon isotopes in magmatic systems serve as powerful tracers for understanding magma evolution, mantle processes, the deep carbon cycle, and the origin of Earth’s carbon. This review provides a comprehensive overview of carbon isotope measurements and behavior in magmatic systems, highlighting recent technological advancements and scientific insights. We begin by examining methods for measuring δ13C in volcanic gases, vesicles, glasses, melt, and fluid inclusions. We then explore the behavior of carbon isotopes in magmatic systems, especially during magmatic degassing. Finally, we evaluate what recent advances mean for our understanding of the carbon isotope signature of the Earth’s upper mantle. 
    more » « less
  2. Abstract The ocean has absorbed about 25% of the carbon emitted by humans to date. To better predict how much climate will change, it is critical to understand how this ocean carbon sink will respond to future emissions. Here, we examine the ocean carbon sink response to low emission (SSP1-1.9, SSP1-2.6), intermediate emission (SSP2-4.5, SSP5-3.4-OS), and high emission (SSP5-8.5) scenarios in CMIP6 Earth System Models and in MAGICC7, a reduced-complexity climate carbon system model. From 2020–2100, the trajectory of the global-mean sink approximately parallels the trajectory of anthropogenic emissions. With increasing cumulative emissions during this century (SSP5-8.5 and SSP2-4.5), the cumulative ocean carbon sink absorbs 20%–30% of cumulative emissions since 2015. In scenarios where emissions decline, the ocean absorbs an increasingly large proportion of emissions (up to 120% of cumulative emissions since 2015). Despite similar responses in all models, there remains substantial quantitative spread in estimates of the cumulative sink through 2100 within each scenario, up to 50 PgC in CMIP6 and 120 PgC in the MAGICC7 ensemble. We demonstrate that for all but SSP1-2.6, approximately half of this future spread can be eliminated if model results are adjusted to agree with modern observation-based estimates. Considering the spatial distribution of air-sea CO2fluxes in CMIP6, we find significant zonal-mean divergence from the suite of newly-available observation-based constraints. We conclude that a significant portion of future ocean carbon sink uncertainty is attributable to modern-day errors in the mean state of air-sea CO2fluxes, which in turn are associated with model representations of ocean physics and biogeochemistry. Bringing models into agreement with modern observation-based estimates at regional to global scales can substantially reduce uncertainty in future role of the ocean in absorbing anthropogenic CO2from the atmosphere and mitigating climate change. 
    more » « less
  3. Abstract Many regions of the planet have experienced an increase in fire activity in recent decades. Although such increases are consistent with warming and drying under continued climate change, the driving mechanisms remain uncertain. Here, we investigate the effects of increasing atmospheric carbon dioxide concentrations on future fire activity using seven Earth system models. Centered on the time of carbon dioxide doubling, the multi-model mean percent change in fire carbon emissions is 66.4 ± 38.8% (versus 1850 carbon dioxide concentrations, under fixed 1850 land-use conditions). A substantial increase is associated with enhanced vegetation growth due to carbon dioxide biogeochemical impacts at 60.1 ± 46.9%. In contrast, carbon dioxide radiative impacts, including warming and drying, yield a negligible response of fire carbon emissions at 1.7 ± 9.4%. Although model representation of fire processes remains uncertain, our results show the importance of vegetation dynamics to future increases in fire activity under increasing carbon dioxide, with potentially important policy implications. 
    more » « less
  4. Abstract The relationship between stomatal traits and environmental drivers across plant communities has important implications for ecosystem carbon and water fluxes, but it has remained unclear. Here, we measure the stomatal morphology of 4492 species-site combinations in 340 vegetation plots across China and calculate their community-weighted values for mean, variance, skewness, and kurtosis. We demonstrate a trade-off between stomatal density and size at the community level. The community-weighted mean and variance of stomatal density are mainly associated with precipitation, while that of stomatal size is mainly associated with temperature, and the skewness and kurtosis of stomatal traits are less related to climatic and soil variables. Beyond mean climate variables, stomatal trait moments also vary with climatic seasonality and extreme conditions. Our findings extend the knowledge of stomatal trait–environment relationships to the ecosystem scale, with applications in predicting future water and carbon cycles. 
    more » « less
  5. The Southern Ocean plays a fundamental role in the global carbon cycle, dominating the oceanic uptake of heat and carbon added by anthropogenic activities and modulating atmospheric carbon concentrations in past, present, and future climates. However, the remote and extreme conditions found there make the Southern Ocean perpetually one of the most difficult places on the planet to observe and to model, resulting in significant and persistent uncertainties in our knowledge of the oceanic carbon cycle there. The flow of carbon in the Southern Ocean is traditionally understood using a zonal mean framework, in which the meridional overturning circulation drives the latitudinal variability observed in both air–sea flux and interior ocean carbon concentration. However, recent advances, based largely on expanded observation and modeling capabilities in the region, reveal the importance of processes acting at smaller scales, including basin-scale zonal asymmetries in mixed-layer depth, mesoscale eddies, and high-frequency atmospheric variability. Assessing the current state of knowledge and remaining gaps emphasizes the need to move beyond the zonal mean picture and embrace a four-dimensional understanding of the carbon cycle in the Southern Ocean. 
    more » « less