skip to main content


Title: Distributed User-Level Private Mean Estimation
Traditionally, an item-level differential privacy framework has been studied for applications in distributed learning. However, when a client has multiple data samples, and might want to also hide its potential participation, a more appropriate notion is that of user-level privacy [1]. In this paper, we develop a distributed private optimization framework that studies the trade-off between user-level local differential privacy guarantees and performance. This is enabled by a novel distributed user- level private mean estimation algorithm using distributed private heavy-hitter estimation. We use this result to develop the privacy- performance trade-off for distributed optimization.  more » « less
Award ID(s):
2139304 2007714
NSF-PAR ID:
10400456
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE International Symposium on Information Theory (ISIT)
Page Range / eLocation ID:
2196 to 2201
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider a distributed empirical risk minimization (ERM) optimization problem with communication efficiency and privacy requirements, motivated by the federated learn- ing (FL) framework. We propose a distributed communication-efficient and local differentially private stochastic gradient descent (CLDP-SGD) algorithm and analyze its communication, privacy, and convergence trade-offs. Since each iteration of the CLDP- SGD aggregates the client-side local gradients, we develop (optimal) communication-efficient schemes for mean estimation for several lp spaces under local differential privacy (LDP). To overcome performance limitation of LDP, CLDP-SGD takes advantage of the inherent privacy amplification provided by client sub- sampling and data subsampling at each se- lected client (through SGD) as well as the recently developed shuffled model of privacy. For convex loss functions, we prove that the proposed CLDP-SGD algorithm matches the known lower bounds on the centralized private ERM while using a finite number of bits per iteration for each client, i.e., effectively get- ting communication efficiency for “free”. We also provide preliminary experimental results supporting the theory. 
    more » « less
  2. In distributed machine learning, while a great deal of attention has been paid on centralized systems that include a central parameter server, decentralized systems have not been fully explored. Decentralized systems have great potentials in the future practical use as they have multiple useful attributes such as less vulnerable to privacy and security issues, better scalability, and less prone to single point of bottleneck and failure. In this paper, we focus on decentralized learning systems and aim to achieve differential privacy with good convergence rate and low communication cost. To achieve this goal, we propose a new algorithm, Leader-Follower Elastic Averaging Stochastic Gradient Descent (LEASGD), driven by a novel Leader-Follower topology and differential privacy model. We also provide a theoretical analysis of the convergence rate of LEASGD and the trade-off between the performance and privacy in the private setting. We evaluate LEASGD in real distributed testbed with poplar deep neural network models MNIST-CNN, MNIST-RNN, and CIFAR-10. Extensive experimental results show that LEASGD outperforms state-of-the-art decentralized learning algorithm DPSGD by achieving nearly 40% lower loss function within same iterations and by 30% reduction of communication cost. Moreover, it spends less differential privacy budget and has final higher accuracy result than DPSGD under private setting. 
    more » « less
  3. null (Ed.)
    We consider the design of private prediction markets , financial markets designed to elicit predictions about uncertain events without revealing too much information about market participants’ actions or beliefs. Our goal is to design market mechanisms in which participants’ trades or wagers influence the market’s behavior in a way that leads to accurate predictions, yet no single participant has too much influence over what others are able to observe. We study the possibilities and limitations of such mechanisms using tools from differential privacy. We begin by designing a private one-shot wagering mechanism in which bettors specify a belief about the likelihood of a future event and a corresponding monetary wager. Wagers are redistributed among bettors in a way that more highly rewards those with accurate predictions. We provide a class of wagering mechanisms that are guaranteed to satisfy truthfulness, budget balance on expectation, and other desirable properties while additionally guaranteeing ε-joint differential privacy in the bettors’ reported beliefs, and analyze the trade-off between the achievable level of privacy and the sensitivity of a bettor’s payment to her own report. We then ask whether it is possible to obtain privacy in dynamic prediction markets, focusing our attention on the popular cost-function framework in which securities with payments linked to future events are bought and sold by an automated market maker. We show that under general conditions, it is impossible for such a market maker to simultaneously achieve bounded worst-case loss and ε-differential privacy without allowing the privacy guarantee to degrade extremely quickly as the number of trades grows (at least logarithmically in number of trades), making such markets impractical in settings in which privacy is valued. We conclude by suggesting several avenues for potentially circumventing this lower bound. 
    more » « less
  4. Voting is used widely to identify a collective decision for a group of agents, based on their preferences. In this paper, we focus on evaluating and designing voting rules that support both the privacy of the voting agents and a notion of fairness over such agents. To do this, we introduce a novel notion of group fairness and adopt the existing notion of local differential privacy. We then evaluate the level of group fairness in several existing voting rules, as well as the trade-offs between fairness and privacy, showing that it is not possible to always obtain maximal economic efficiency with high fairness or high privacy levels. Then, we present both a machine learning and a constrained optimization approach to design new voting rules that are fair while maintaining a high level of economic efficiency. Finally, we empirically examine the effect of adding noise to create local differentially private voting rules and discuss the three-way trade-off between economic efficiency, fairness, and privacy.This paper appears in the special track on AI & Society. 
    more » « less
  5. The notion of replicable algorithms was introduced by Impagliazzo, Lei, Pitassi, and Sorrell (STOC’22) to describe randomized algorithms that are stable under the resampling of their inputs. More precisely, a replicable algorithm gives the same output with high probability when its randomness is fixed and it is run on a new i.i.d. sample drawn from the same distribution. Using replicable algorithms for data analysis can facilitate the verification of published results by ensuring that the results of an analysis will be the same with high probability, even when that analysis is performed on a new data set. In this work, we establish new connections and separations between replicability and standard notions of algorithmic stability. In particular, we give sample-efficient algorithmic reductions between perfect generalization, approximate differential privacy, and replicability for a broad class of statistical problems. Conversely, we show any such equivalence must break down computationally: there exist statistical problems that are easy under differential privacy, but that cannot be solved replicably without breaking public-key cryptography. Furthermore, these results are tight: our reductions are statistically optimal, and we show that any computational separation between DP and replicability must imply the existence of one-way functions. Our statistical reductions give a new algorithmic framework for translating between notions of stability, which we instantiate to answer several open questions in replicability and privacy. This includes giving sample-efficient replicable algorithms for various PAC learning, distribution estimation, and distribution testing problems, algorithmic amplification of δ in approximate DP, conversions from item-level to user-level privacy, and the existence of private agnostic-to-realizable learning reductions under structured distributions. 
    more » « less