skip to main content


Title: Towards Decentralized Deep Learning with Differential Privacy
In distributed machine learning, while a great deal of attention has been paid on centralized systems that include a central parameter server, decentralized systems have not been fully explored. Decentralized systems have great potentials in the future practical use as they have multiple useful attributes such as less vulnerable to privacy and security issues, better scalability, and less prone to single point of bottleneck and failure. In this paper, we focus on decentralized learning systems and aim to achieve differential privacy with good convergence rate and low communication cost. To achieve this goal, we propose a new algorithm, Leader-Follower Elastic Averaging Stochastic Gradient Descent (LEASGD), driven by a novel Leader-Follower topology and differential privacy model. We also provide a theoretical analysis of the convergence rate of LEASGD and the trade-off between the performance and privacy in the private setting. We evaluate LEASGD in real distributed testbed with poplar deep neural network models MNIST-CNN, MNIST-RNN, and CIFAR-10. Extensive experimental results show that LEASGD outperforms state-of-the-art decentralized learning algorithm DPSGD by achieving nearly 40% lower loss function within same iterations and by 30% reduction of communication cost. Moreover, it spends less differential privacy budget and has final higher accuracy result than DPSGD under private setting.  more » « less
Award ID(s):
1756013 1838024
NSF-PAR ID:
10095700
Author(s) / Creator(s):
; ; ; ; ; ; ;  
Date Published:
Journal Name:
2019 International Conference on Cloud Computing (CLOUD 2019)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While embracing various machine learning techniques to make effective decisions in the big data era, preserving the privacy of sensitive data poses significant challenges. In this paper, we develop a privacy-preserving distributed machine learning algorithm to address this issue. Given the assumption that each data provider owns a dataset with different sample size, our goal is to learn a common classifier over the union of all the local datasets in a distributed way without leaking any sensitive information of the data samples. Such an algorithm needs to jointly consider efficient distributed learning and effective privacy preservation. In the proposed algorithm, we extend stochastic alternating direction method of multipliers (ADMM) in a distributed setting to do distributed learning. For preserving privacy during the iterative process, we combine differential privacy and stochastic ADMM together. In particular, we propose a novel stochastic ADMM based privacy-preserving distributed machine learning (PS-ADMM) algorithm by perturbing the updating gradients, that provide differential privacy guarantee and have a low computational cost. We theoretically demonstrate the convergence rate and utility bound of our proposed PS-ADMM under strongly convex objective. Through our experiments performed on real-world datasets, we show that PS-ADMM outperforms other differentially private ADMM algorithms under the same differential privacy guarantee. 
    more » « less
  2. In this paper, a distributed swarm control problem is studied for large-scale multi-agent systems (LS-MASs). Different than classical multi-agent systems, an LS-MAS brings new challenges to control design due to its large number of agents. It might be more difficult for developing the appropriate control to achieve complicated missions such as collective swarming. To address these challenges, a novel mixed game theory is developed with a hierarchical learning algorithm. In the mixed game, the LS-MAS is represented as a multi-group, large-scale leader–follower system. Then, a cooperative game is used to formulate the distributed swarm control for multi-group leaders, and a Stackelberg game is utilized to couple the leaders and their large-scale followers effectively. Using the interaction between leaders and followers, the mean field game is used to continue the collective swarm behavior from leaders to followers smoothly without raising the computational complexity or communication traffic. Moreover, a hierarchical learning algorithm is designed to learn the intelligent optimal distributed swarm control for multi-group leader–follower systems. Specifically, a multi-agent actor–critic algorithm is developed for obtaining the distributed optimal swarm control for multi-group leaders first. Furthermore, an actor–critic–mass method is designed to find the decentralized swarm control for large-scale followers. Eventually, a series of numerical simulations and a Lyapunov stability proof of the closed-loop system are conducted to demonstrate the performance of the developed scheme. 
    more » « less
  3. In modern machine learning systems, distributed algorithms are deployed across applications to ensure data privacy and optimal utilization of computational resources. This work offers a fresh perspective to model, analyze, and design distributed optimization algorithms through the lens of stochastic multi-rate feedback control. We show that a substantial class of distributed algorithms—including popular Gradient Tracking for decentralized learning, and FedPD and Scaffold for federated learning—can be modeled as a certain discrete-time stochastic feedback-control system, possibly with multiple sampling rates. This key observation allows us to develop a generic framework to analyze the convergence of the entire algorithm class. It also enables one to easily add desirable features such as differential privacy guarantees, or to deal with practical settings such as partial agent participation, communication compression, and imperfect communication in algorithm design and analysis. 
    more » « less
  4. There is great demand for scalable, secure, and efficient privacy-preserving machine learning models that can be trained over distributed data. While deep learning models typically achieve the best results in a centralized non-secure setting, different models can excel when privacy and communication constraints are imposed. Instead, tree-based approaches such as XGBoost have attracted much attention for their high performance and ease of use; in particular, they often achieve state-of-the-art results on tabular data. Consequently, several recent works have focused on translating Gradient Boosted Decision Tree (GBDT) models like XGBoost into federated settings, via cryptographic mechanisms such as Homomorphic Encryption (HE) and Secure Multi-Party Computation (MPC). However, these do not always provide formal privacy guarantees, or consider the full range of hyperparameters and implementation settings. In this work, we implement the GBDT model under Differential Privacy (DP). We propose a general framework that captures and extends existing approaches for differentially private decision trees. Our framework of methods is tailored to the federated setting, and we show that with a careful choice of techniques it is possible to achieve very high utility while maintaining strong levels of privacy. 
    more » « less
  5. Matrix factorization (MF) approximates unobserved ratings in a rating matrix, whose rows correspond to users and columns correspond to items to be rated, and has been serving as a fundamental building block in recommendation systems. This paper comprehensively studies the problem of matrix factorization in different federated learning (FL) settings, where a set of parties want to cooperate in training but refuse to share data directly. We first propose a generic algorithmic framework for various settings of federated matrix factorization (FMF) and provide a theoretical convergence guarantee. We then systematically characterize privacy-leakage risks in data collection, training, and publishing stages for three different settings and introduce privacy notions to provide end-to-end privacy protections. The first one is vertical federated learning (VFL), where multiple parties have the ratings from the same set of users but on disjoint sets of items. The second one is horizontal federated learning (HFL), where parties have ratings from different sets of users but on the same set of items. The third setting is local federated learning (LFL), where the ratings of the users are only stored on their local devices. We introduce adapted versions of FMF with the privacy notions guaranteed in the three settings. In particular, a new private learning technique called embedding clipping is introduced and used in all the three settings to ensure differential privacy. For the LFL setting, we combine differential privacy with secure aggregation to protect the communication between user devices and the server with a strength similar to the local differential privacy model, but much better accuracy. We perform experiments to demonstrate the effectiveness of our approaches. 
    more » « less