skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computational aerodynamics with isogeometric analysis
Abstract The superior accuracy isogeometric analysis (IGA) brought to computations in fluid and solid mechanics has been yielding higher fidelity in computational aerodynamics. The increased accuracy we achieve with the IGA is in the flow solution, in representing the problem geometry, and, when we use the IGA basis functions also in time in a space–time (ST) framework, in representing the motion of solid surfaces. It is of course as part of a set of methods that the IGA has been very effective in computational aerodynamics, including complex-geometry aerodynamics. The set of methods we have been using can be categorized into those that serve as a core method, those that increase the accuracy, and those that widen the application range. The core methods are the residual-based variational multiscale (VMS), ST-VMS and arbitrary Lagrangian–Eulerian VMS methods. The IGA and ST-IGA are examples of the methods that increase the accuracy. The complex-geometry IGA mesh generation method is an example of the methods that widen the application range. The ST Topology Change method is another example of that. We provide an overview of these methods for IGA-based computational aerodynamics and present examples of the computations performed. In computational flow analysis with moving solid surfaces and contact between the solid surfaces, it is a challenge to represent the boundary layers with an accuracy attributed to moving-mesh methods and represent the contact without leaving a mesh protection gap.  more » « less
Award ID(s):
1854436
PAR ID:
10401000
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Mechanics
Volume:
39
ISSN:
1811-8216
Page Range / eLocation ID:
p. 24-39
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Computational cardiovascular flow analysis can provide valuable information to medical doctors in a wide range of patientspecific cases, including cerebral aneurysms, aortas and heart valves. The computational challenges faced in this class of flow analyses also have a wide range. They include unsteady flows, complex cardiovascular geometries, moving boundaries and interfaces, such as the motion of the heart valve leaflets, contact between moving solid surfaces, such as the contact between the leaflets, and the fluid–structure interaction between the blood and the cardiovascular structure. Many of these challenges have been or are being addressed by the Space–Time Variational Multiscale (ST-VMS) method, Arbitrary Lagrangian–Eulerian VMS (ALE-VMS) method, and the VMS-based Immersogeometric Analysis (IMGA-VMS), which serve as the core computational methods, and the special methods used in combination with them. We provide an overview of the core and special methods and present examples of challenging computations carried out with these methods, including aorta and heart valve flow analyses. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited. 
    more » « less
  2. The challenges encountered in computational analysis of wind turbines and turbomachinery include turbulent rotational flows, complex geometries, moving boundaries and interfaces, such as the rotor motion, and the fluid-structure interaction (FSI), such as the FSI between the wind turbine blade and the air. The Arbitrary Lagrangian-Eulerian (ALE) and Space-Time (ST) Variational Multiscale (VMS) methods and isogeometric discretization have been effective in addressing these challenges. The ALE-VMS and ST-VMS serve as core computational methods. They are supplemented with special methods like the Slip Interface (SI) method and ST Isogeometric Analysis with NURBS basis functions in time. We describe the core and special methods and present, as examples of challenging computations performed, computational analysis of horizontaland vertical-axis wind turbines and flow-driven This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.string dynamics in pumps. 
    more » « less
  3. Abstract Isogeometric analysis (IGA) is a computational technique that integrates computer-aided design (CAD) with finite element analysis (FEA) by employing the same basis functions for both geometry representation and solution approximation. While IGA offers numerous advantages, such as improved accuracy and efficiency, it also presents several challenges related to geometric modeling. Some of these challenges include accurately representing complex geometries with NURBS (Non-Uniform Rational B-Splines) or other basis functions used in IGA and generating high-quality meshes that conform to the complex geometry represented by NURBS curves/surfaces. This paper introduces an analytical framework to provide a more efficient and theoretically grounded method for generating curvilinear configurations and its analytical solution in IGA, bridging the gap between generated data and its physical representations. This innovative approach is distinguished by integrating the NURBS parameterization in curve generation and providing a corresponding framework to achieve a broader and more accurate explanation of meshes and properties, especially constructing new coordinates and calculating the physical displacements under these conditions. Our model enables the analytical understanding of complex curves from the UIUC airfoil and superformula datasets, demonstrating a deeper dive into simulations. This study signifies a pivotal juncture wherein machine-learning-based complex geometrical formulations are synergistically combined with actual isogeometric analysis. 
    more » « less
  4. Computational modeling and simulation of real-world problems, e.g., various applications in the automotive, aerospace, and biomedical industries, often involve geometric objects which are bounded by curved surfaces. The geometric modeling of such objects can be performed via high-order meshes. Such a mesh, when paired with a high-order partial differential equation (PDE) solver, can realize more accurate solution results with a decreased number of mesh elements (in comparison to a low-order mesh). There are several types of high-order mesh generation approaches, such as direct methods, a posteriori methods, and isogeometric analysis (IGA)-based spline modeling approaches. In this paper, we propose a direct, high-order, curvilinear tetrahedral mesh generation method using an advancing front technique. After generating the mesh, we apply mesh optimization to improve the quality and to take advantage of the degrees of freedom available in the initially straight-sided quadratic elements. Our method aims to generate high-quality tetrahedral mesh elements from various types of boundary representations including the cases where no computer-aided design files are available. Such a method is essential, for example, for generating meshes for various biomedical models where the boundary representation is obtained from medical images instead of CAD files. We present several numerical examples of second-order tetrahedral meshes generated using our method based on input triangular surface meshes. 
    more » « less
  5. Abstract Fuel efficiency becomes very important for new vehicles. Therefore, improving the aerodynamics of tires has started to receive increasing interest. While the experimental approaches are time-consuming and costly, numerical methods have been employed to investigate the air flow around tires. Rotating boundary and contact patch are important challenges in the modeling of tire aerodynamics. Therefore, majority of the current modeling approaches are simplified by neglecting the tire deformation and contact patch. In this study, a baseline computational fluid dynamics (CFD) model is created for a tire with contact patch. To generate mesh efficiently, a hybrid mesh, which combines hex elements and polyhedral elements, is used. Then, three modeling approaches (rotating wall, multiple reference frame, and sliding mesh) are compared for the modeling of tire rotation. Additionally, three different tire designs are investigated, including smooth tire, grooved tire, and grooved tire with open rim. The predicted results of the baseline model agree well with the measured data. Additionally, the hybrid mesh shows to be efficient and to generate accurate results. The CFD model tends to overpredict the drag of a rotating tire with contact patch. Sliding mesh approach generated more accurate predictions than the rotating wall and multiple reference frame approaches. For different tire designs, tire with open rim has the highest drag. It is believed that the methodology presented in this study will help in designing new tires with high aerodynamic performance. 
    more » « less