skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Detection of Ethylene with Defined Metal Complexes: Strategies and Recent Advances
Abstract Despite its relative simplicity, ethylene is an interesting molecule with wide‐ranging impact in modern chemistry and biology. Stemming from ethylene's role as a critical plant hormone, there has been significant effort to develop selective and sensitive molecular sensors for ethylene. Late transition metal complexes have played an important role in detection strategies due to ethylene's lack of structural complexity and limited reactivity. Two main approaches to ethylene detection are identified: (1) coordination‐based sensors, wherein ethylene binds reversibly to a metal center, and (2) activity‐based sensors, wherein ethylene undergoes a reaction at a metal center, resulting in the formation and destruction of covalent bonds. Herein, we describe the advantages and disadvantages of various approaches, and the challenges remaining for sensor development.  more » « less
Award ID(s):
1900482
PAR ID:
10401431
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Analysis & Sensing
Volume:
3
Issue:
2
ISSN:
2629-2742
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this review, recent research efforts that aimed at developing nanopore sensors for detection of metal ions, which play a crucial role in environmental safety and human health, are highlighted. Protein pores use three stochastic sensing‐based strategies for metal ion detection. The first strategy is to construct engineered nanopores with metal ion binding sites, so that the interaction between the target analytes and the nanopore can slow the movement of metal ions in the nanochannel. Second, large molecules such as nucleic acids and especially peptides can be utilized as external selective molecular probes to detect metal ions based on the conformational change of the ligand molecules induced by the metal ion–ligand chelation/coordination interaction. Third, enzymatic reactions can also be used as an alternative to the molecule probe strategy in the situation that a sensitive and selective probe molecule for the target analyte is difficult to obtain. On the other hand, by taking advantage of steady‐state analysis, synthetic nanopores mainly use two strategies (modification and modification‐free) to detect metals. Given the advantages of high sensitivity and selectivity, and label‐free detection, nanopore‐based metal ion sensors should find useful application in many fields, including environmental monitoring, medical diagnosis, and so on. 
    more » « less
  2. Abstract Herein, we report for the first time the use of the nitrogen‐based bidentate molecule [2.2]pyridinophane (N2) as a ligand for metal complexes. Additionally, its improved synthesis allows for electronic modification of the pyridine rings to access the newpara‐dimethylamino‐[2.2]pyridinophane ligand (p‐NMe2N2). These ligands bind nickel in an analogous fashion to other pyridinophane ligands, completing the series of tetra‐, tri‐, and bidentate pyridinophane‐nickel complexes. The new compounds exhibit geometrically enforced C−H anagostic interactions between the ethylene bridge protons and the nickel center that are not present in other pyridinophane systems. These ethylene bridge groups also act as an unusual form of steric encumbrance, enforcing square planar geometries in ligand fields that would otherwise adopt tetrahedral structures. In addition, these anagostic interactions inhibit the catalytic performance in Csp3–Csp3Kumada cross coupling reactions relative to other common bidentate N‐ligand platforms, possibly by preventing the formation of the 5‐coordinate oxidative addition intermediates. 
    more » « less
  3. Abstract Flexible sensors with accurate detection of environmental stimuli (e.g., humidity and chemical substances) have drawn increasing research interests in biomedical engineering and environmental science. However, most work is focused on isotropic sensing of liquid occurrence due to the limitation of material development, sensor design, and fabrication capability. 3D printing is used to build multifunctional flexible liquid sensors with multimaterials enabling anisotropic detection of microliquid droplets, and described herein. Electrical conductive composite hydrogels capable of detecting chemical liquid are developed with poly (ethylene diacrylate) (PEGDA) and multiwalled carbon nanotube (MWCNT). Due to the absorption of the liquid droplet and related swelling behavior, the resistance of PEGDA/MWCNT composite hydrogel increases dramatically, while the resistance of pure PEGDA hydrogel decreases significantly. Based on the two composite hydrogels and the related 3D printing method, a mesh‐shaped liquid sensor that can effectively identify the position and volume of liquid leakage in a short time is developed. Furthermore, a three‐layered liquid sensor to enable bidirectional monitor and detection of the liquid leakage in two different sides is demonstrated. The 3D‐printed liquid sensor offers a distinctive perspective on the potential applications in various fields for detection of liquid leakage in accurate position and direction. 
    more » « less
  4. Abstract A (4+1)‐cycloaddition is reported between 1,2‐dicarbonyls and aza‐o‐quinone methide precursors to access 2,3‐dihydroindoles bearing a tetra‐substituted carbon center. The utilization of dioxyphospholenes as carbene surrogates provided dihydroindoles in 20–90 % yield, wherein the electronic nature of the dioxyphospholene impacts its role in the reaction. 
    more » « less
  5. Abstract The central role of iron in tumor progression and metastasis motivates the development of iron‐binding approaches in cancer chemotherapy. Disulfide‐based prochelators are reductively activated upon cellular uptake to liberate thiol chelators responsible for iron sequestration. Herein, a trimethyl thiosemicarbazone moiety and the imidazole‐2‐thione heterocycle are incorporated in this prochelator design. Iron binding of the corresponding tridentate chelators leads to the stabilization of a low‐spin ferric center in 2 : 1 ligand‐to‐metal complexes. Native mass spectrometry experiments show that the prochelators form stable disulfide conjugates with bovine serum albumin, thus affording novel bioconjugate prochelator systems. Antiproliferative activities at sub‐micromolar levels are recorded in a panel of breast, ovarian and colorectal cancer cells, along with significantly lower activity in normal fibroblasts. 
    more » « less