skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mineral surface area in deep weathering profiles reveals the interrelationship of iron oxidation and silicate weathering
Abstract. Mineral specific surface area (SSA) increases as primaryminerals weather and restructure into secondary phyllosilicate, oxide, andoxyhydroxide minerals. SSA is a measurable property that captures cumulativeeffects of many physical and chemical weathering processes in a singlemeasurement and has meaningful implications for many soil processes,including water-holding capacity and nutrient availability. Here we reportour measurements of SSA and mineralogy of two 21 m deep SSA profiles attwo landscape positions, in which the emergence of a very small mass percent(<0.1 %) of secondary oxide generated 36 %–81 % of the total SSAin both drill cores. The SSA transition occurred near 3 m at bothlocations and did not coincide with the boundary of soil to weathered rock. The3 m boundary in each weathering profile coincides with the depth extentof secondary iron oxide minerals and secondary phyllosilicates. Althoughelemental depletions in both profiles extend to 7 and 10 m depth, themineralogical changes did not result in SSA increase until 3 m depth. Theemergence of secondary oxide minerals at 3 m suggests that this boundary may bethe depth extent of oxidation weathering reactions. Our results suggest thatoxidation weathering reactions may be the primary limitation in thecoevolution of both secondary silicate and secondary oxide minerals. Wevalue element depletion profiles to understand weathering, but our findingof nested weathering fronts driven by different chemical processes (e.g.,oxidation to 3 m and acid dissolution to 10 m) warrants the recognition thatelement depletion profiles are not able to identify the full set ofprocesses that occur in weathering profiles.  more » « less
Award ID(s):
2153786
PAR ID:
10401496
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Earth Surface Dynamics
Volume:
11
Issue:
1
ISSN:
2196-632X
Page Range / eLocation ID:
51 to 69
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rate of chemical weathering has been observed to increase with the rate of physical erosion in published comparisons of many catchments, but the mechanisms that couple these processes are not well understood. We investigated this question by exam- ining the chemical weathering and porosity profiles from catchments developed on marine shale located in Pennsylvania, USA (Susquehanna Shale Hills Critical Zone Observatory, SSHCZO); California, USA (Eel River Critical Zone Observatory, ERC- ZO); and Taiwan (Fushan Experimental Forest). The protolith compositions, protolith porosities, and the depths of regolith at these sites are roughly similar while the catchments are characterized by large differences in erosion rate (1–3 mm yr􏱝1 in Fushan 􏱞 0.2–0.4 mm yr􏱝1 in ERCZO 􏱞 0.01–0.025 mm yr􏱝1 in SSHCZO). The natural experiment did not totally isolate erosion as a variable: mean annual precipitation varied along the erosion gradient (4.2 m yr􏱝1 in Fushan > 1.9 m yr􏱝1 in ERCZO > 1.1 m yr􏱝1 in SSHCZO), so the fastest eroding site experiences nearly twice the mean annual temperature of the other two. Even though erosion rates varied by about 100􏱟, the depth of pyrite and carbonate depletion (defined here as regolith thickness) is roughly the same, consistent with chemical weathering of those minerals keeping up with erosion at the three sites. These minerals were always observed to be the deepest to react, and they reacted until 100% depletion. In two of three of the catchments where borehole observations were available for ridges, these minerals weathered across narrow reaction fronts. On the other hand, for the rock-forming clay mineral chlorite, the depth interval of weathering was wide and the extent of depletion observed at the land surface decreased with increasing erosion/precipitation. Thus, chemical weathering of the clay did not keep pace with erosion rate. But perhaps the biggest difference among the shales is that in the fast-eroding sites, microfractures account for 30–60% of the total porosity while in the slow-eroding shale, dissolution could be directly related to secondary porosity. We argue that the microfractures increase the influx of oxygen at depth and decrease the size of diffusion-limited internal domains of matrix, accelerating weathering of pyrite and carbonate under high erosion-rate condi- tions. Thus, microfracturing is a process that can couple physical erosion and chemical weathering in shales. 
    more » « less
  2. Abstract Lithium isotopes are used to trace weathering intensity, but little is known about the processes that fractionate them in highly weathered settings, where secondary minerals play a dominant role in weathering reactions. To help fill this gap in our knowledge of Li isotope systematics, we investigated Li isotope fractionation at an andesitic catchment in Puerto Rico, where the highest rates of silicate weathering on Earth have been documented. We found the lowest δ7Li values published to date for porewater (−27‰) and bulk regolith (−38‰), representing apparent fractionations relative to parent rock of −31‰ and −42‰, respectively. We also found δ7Li values that are lower in the exchangeable fraction than in the bulk regolith or porewater, the opposite than expected from secondary mineral precipitation. We interpret these large isotopic offsets and the unusual relationships between Li pools as resulting from two distinct weathering processes at different depths in the regolith. At the bedrock‐regolith transition (9.3–8.5 m depth), secondary mineral precipitation preferentially retains the lighter6Li isotope. These minerals then dissolve further up the profile, leaching6Li from the bulk solid, with a total variation of about +50‰withinthe profile, attributable primarily to clay dissolution. Importantly, streamwater δ7Li (about +35‰) is divorced entirely from these regolith weathering processes, instead reflecting deeper weathering reactions (>9.3 m). Our work thus shows that the δ7Li of waters draining highly weathered catchments may reflect bedrock mineralogy and hydrology, rather than weathering intensity in the regolith covering the catchment. 
    more » « less
  3. Silicate weathering and organic carbon (OC) burial in soil regulate atmospheric CO2, but their influence on each other remains unclear. Generally, OC oxidation can generate acids that drive silicate weathering, yet clay minerals that form during weathering can protect OC and limit oxidation. This poses a conundrum where clay formation and OC preservation either compete or cooperate. Debate remains about their relative contributions because quantitative tools to simultaneously probe these processes are lacking while those that exist are often not measured in concert. Here we demonstrate that Li isotope ratios of sediment, commonly used to trace clay formation, can help constrain OC cycling. Measurements of river suspended sediment from two watersheds of varying physiography and analysis of published data from Hawaii soil profiles show negative correlations between solid-phase d7Li values and OC content, indicating the association of clay mineral formation with OC accumulation. Yet, the localities differ in their ranges of d7Li values and OC contents, which we interpret with a model of soil formation. We find that temporal trends of Li isotopes and OC are most sensitive to mineral dissolution/clay formation rates, where higher rates yield greater OC stocks and lower d7Li values. Whereas OC-enhanced dissolution primarily dictates turnover times of OC and silicate minerals, clay protection distinctly modifies soil formation pathways and is likely required to explain the range of observations. These findings underscore clay mineral formation, driven primarily by bedrock chemistry and secondarily by climate, as a principal modulator of weathering fluxes and OC accumulation in soil. 
    more » « less
  4. Mineral weathering is an important soil-forming process driven by the interplay of water, organisms, solution chemistry, and mineralogy. The influence of hillslope-scale patterns of water flux on mineral weathering in soils is still not well understood, particularly in humid postglacial soils, which commonly harbor abundant weath- erable primary minerals. Previous work in these settings showed the importance of lateral hydrologic patterns to hillslope-scale pedogenesis. In this study, we hypothesized that there is a corresponding relationship between hydrologically driven pedogenesis and chemical weathering in podzols in the White Mountains of New Hamp- shire, USA. We tested this hypothesis by quantifying the depletion of plagioclase in the fine fraction (≤2 mm) of closely spaced, similar-age podzols along a gradient in topography and depth to bedrock that controls lateral water flow. Along this gradient, laterally developed podzols formed through frequent, episodic flushing by up- slope groundwater, and vertically developed podzols formed through characteristic vertical infiltration. We estimated the depletion of plagioclase-bound elements within the upper mineral horizons of podzols using mass transfer coefficients (τ) and quantified plagioclase losses directly through electron microscopy and microprobe analysis. Elemental depletion was significantly more pronounced in the upslope lateral eluvial (E horizon- dominant) podzols relative to lateral illuvial (B horizon-dominant) and vertical (containing both E and B hori- zons) podzols downslope, with median Na losses of ~74 %, ~56 %, and ~40 %, respectively. When comparing genetic E horizons, Na and Al were significantly more depleted in laterally developed podzols relative to vertically developed podzols. Microprobe analysis revealed that ~74 % of the plagioclase was weathered from the mineral pool of lateral eluvial podzols, compared to ~39 % and ~23 % for lateral illuvial podzols and vertically developed podzols, respectively. Despite this intense weathering, plagioclase remains the second most abundant mineral in soil thin sections. These findings confirm that the concept of soil development as occurring vertically does not accurately characterize soils in topographically complex regions. Our work improves the current understanding of pedogenesis by identifying distinct, short-scale gradients in mineral weathering shaped by local patterns of hydrology and topography. 
    more » « less
  5. Chemical weathering influences many aspects of the Earth system, including biogeochemical cycling, climate, and ecosystem function. Physical erosion influences chemical weathering rates by setting the supply of fresh minerals to the critical zone. Vegetation also influences chemical weathering rates, both by physical processes that expose mineral surfaces and via production of acids that contribute to mineral dissolution. However, the role of vegetation in setting surface process rates in different landscapes is unclear. Here we use 10Be and geochemical mass balance to quantify soil production, physical erosion, and chemical weathering rates in a landscape where a migrating drainage divide separates catchments with an order-of magnitude contrast in erosion rates and where vegetation spans temperate rainforest, tussock grassland, and unvegetated alpine ecosystems in the western Southern Alps of New Zealand. Soil production, physical erosion, and chemical weathering rates are significantly higher on the rapidly eroding versus the slowly eroding side of the drainage divide. However, chemical weathering intensity does not vary significantly across the divide or as a function of vegetation type. Soil production rates are correlated with ridgetop curvature, and ridgetops are more convex on the rapidly eroding side of the divide, where soil mineral residence times are lowest. Hence our findings suggest fluvially-driven erosion rates control soil production and soil chemical weathering rates by influencing the relationship between hillslope topography and mineral residence times. In the western Southern Alps, soil production and chemical weathering rates are more strongly mediated by physical rock breakdown driven by landscape response to tectonics, than by vegetation. 
    more » « less